The Art of Workload Selection

Raj Jain Washington University in Saint Louis Saint Louis, MO 63130 Jain@cse.wustl.edu

These slides are available on-line at:

http://www.cse.wustl.edu/~jain/cse567-11/

Washington University in St. Louis

The Art of Workload Selection

Considerations:

- Services exercised
- Level of detail
- □ Loading level
- □ Impact of other components
- Timeliness

Services Exercised

```
□ SUT = System Under Test
```

```
□ CUS = Component Under Study
```


Services Exercised (Cont)

- Do not confuse SUT w CUS
- Metrics depend upon SUT: MIPS is ok for two CPUs but not for two timesharing systems.
- □ Workload: depends upon the system.
- □ Examples:
 - > CPU: instructions
 - System: Transactions
 - > Transactions not good for CPU and vice versa
 - > Two systems identical except for CPU
 - Comparing Systems: Use transactions
 - Comparing CPUs: Use instructions
 - Multiple services: Exercise as complete a set of services as possible.

Washington University in St. Louis

Example: Timesharing Systems

- Applications $\Rightarrow Application benchmark$
- □ Operating System ⇒ Synthetic Program
- □ Central Processing Unit ⇒ Instruction Mixes
- $\square Arithmetic Logical Unit$ $\Rightarrow Addition instruction$

Example: Networks

Level of Detail

- □ Most frequent request:
 - > Examples: Addition Instruction, Debit-Credit, Kernels
 - > Valid if one service is much more frequent than others
- □ Frequency of request types
 - > Examples: Instruction mixes
 - > Context sensitivity \Rightarrow Use set of services
 - ➤ History-sensitive mechanisms (caching) ⇒ Context sensitivity
- □ Time-stamped sequence of requests
 - > May be too detailed
 - > Not convenient for analytical modeling
 - May require exact reproduction of component behavior

Level of Detail (Cont)

- □ Average resource demand
 - > Used for analytical modeling
 - Grouped similar services in classes
- Distribution of resource demands
 - > Used if variance is large
 - > Used if the distribution impacts the performance
- □ Workload used in simulation and analytical modeling:
 - > Non executable: Used in analytical/simulation modeling
 - > Executable workload: can be executed directly on a system

Representativeness

- The test workload and real workload should have the same:
- □ Elapsed Time
- **Resource Demands**
- Resource Usage Profile: Sequence and the amounts in which different resources are used.

Timeliness

- Users are a moving target.
- $\square New systems \Rightarrow new workloads$
- Users tend to optimize the demand.
- □ Fast multiplication ⇒ Higher frequency of multiplication instructions.
- Important to monitor user behavior on an ongoing basis.

Other Considerations in Workload Selection

- □ Loading Level: A workload may exercise a system to its:
 - Full capacity (best case)
 - > Beyond its capacity (worst case)
 - > At the load level observed in real workload (typical case).
 - > For procurement purposes \Rightarrow Typical
 - > For design \Rightarrow best to worst, all cases
- □ Impact of External Components:
 - ➤ Do not use a workload that makes external component a bottleneck ⇒ All alternatives in the system give equally good performance.
- Repeatability

- □ Services exercised determine the workload
- Level of detail of the workload should match that of the model being used
- Workload should be representative of the real systems usage in recent past
- Loading level, impact of external components, and repeatability or other criteria in workload selection

Exercise 5.1

- □ What metric and workload would you choose to compare:
 - a. Two systems with similar functionality: IBM PC versus MAC
 - b. Two systems for very different applications: PC versus Workstations
 - c. Two systems with identical functionality: IBM PC versus Dell PC
 - d. Two versions of the same operating systems: Windows 98 vs Windows XP
 - e. Two hardware components: Two floppy drives
 - f. Two languages: C vs. Pascal

One metric and one workload is sufficient

Exercise 5.2

Select an area of computer systems, for example, databases, networks, processors, and so on. Prepare a table identifying increasing levels of services, components, factors, and workloads.

Homework 5

- □ Read chapters 4 and 5
- □ Submit answer to Exercise 5.1