
CSE 567M Computer Systems Analysis

Raj Jain Washington University in Saint Louis Saint Louis, MO 63130 Jain@cse.wustl.edu

These slides are available on-line at:

http://www.cse.wustl.edu/~jain/cse567-11/

Washington University in St. Louis

- □ Contents of the course
- □ Tentative Schedule

Project

Grading

Goal of This Course

- **Comprehensive course on performance analysis**
- Includes measurement, statistical modeling, experimental design, simulation, and queuing theory
- How to avoid common mistakes in performance analysis
- Graduate course: (Advanced Topics)
 - \Rightarrow Lot of independent reading and writing
 - \Rightarrow Project/Survey paper (Research techniques)

Text Book

 R. Jain, "Art of Computer Systems Performance Analysis," Wiley, 1991, ISBN:0471503363 (Winner of the "1992 Best Computer Systems Book" Award from Computer Press Association")

Objectives: What You Will Learn

- Specifying performance requirements
- Evaluating design alternatives
- Comparing two or more systems
- Determining the optimal value of a parameter (system tuning)
- □ Finding the performance bottleneck (bottleneck identification)
- Characterizing the load on the system (workload characterization)
- Determining the number and sizes of components (capacity planning)
- □ Predicting the performance at future loads (forecasting).

Basic Terms

- System: Any collection of hardware, software, and firmware
- Metrics: Criteria used to evaluate the performance of the system. components.
- □ Workloads: The requests made by the users of the system.

Main Parts of the Course

- □ Part I: An Overview of Performance Evaluation
- □ Part II: Measurement Techniques and Tools
- □ Part III: Probability Theory and Statistics
- □ Part IV: Experimental Design and Analysis
- Part V: Simulation
- □ Part VI: Queueing Theory

Part I: An Overview of Performance Evaluation

Introduction

- Common Mistakes and How To Avoid Them
- □ Selection of Techniques and Metrics

Example I

- What performance metrics should be used to compare the performance of the following systems:
 - > Two disk drives?
 - > Two transaction-processing systems?
 - > Two packet-retransmission algorithms?

Part II: Measurement Techniques and Tools

- □ Types of Workloads
- Popular Benchmarks
- □ The Art of Workload Selection
- Workload Characterization Techniques
- Monitors
- Accounting Logs
- Monitoring Distributed Systems
- Load Drivers
- Capacity Planning
- **The Art of Data Presentation**
- **Ratio Games**

Example II

- Which type of monitor (software or hardware) would be more suitable for measuring each of the following quantities:
 - > Number of Instructions executed by a processor?
 - > Degree of multiprogramming on a timesharing system?
 - > Response time of packets on a network?

Part III: Probability Theory and Statistics

- Probability and Statistics Concepts
- Four Important Distributions
- Summarizing Measured Data By a Single Number
- Summarizing The Variability Of Measured Data
- Graphical Methods to Determine Distributions of Measured Data
- Sample Statistics
- Confidence Interval
- Comparing Two Alternatives
- Measures of Relationship
- Simple Linear Regression Models
- Multiple Linear Regression Models
- Other Regression Models

Washington University in St. Louis

CSE567M

File Size Link A Link B
1000 5 10
1200 7 3
1300 3 0
50 0 1

Part IV: Experimental Design and Analysis

- □ Introduction to Experimental Design
- □ 2^k Factorial Designs
- □ 2^kr Factorial Designs with Replications
- □ 2^{k-p} Fractional Factorial Designs
- One Factor Experiments
- Two Factors Full Factorial Design without Replications
- **Two Factors Full Factorial Design with Replications**
- General Full Factorial Designs With *k* Factors

Example IV

- The performance of a system depends on the following three factors:
 - Garbage collection technique used: G1, G2, or none.
 - > Type of workload: editing, computing, or AI.
 - > Type of CPU: C1, C2, or C3.
- How many experiments are needed? How does one estimate the performance impact of each factor?

Part V: Simulation

- □ Introduction to Simulation
- **Types of Simulations**
- Model Verification and Validation
- Analysis of Simulation Results
- Random-Number Generation
- Testing Random-Number Generators
- **Random-Variate Generation**
- Commonly Used Distributions

Example V

- □ In order to compare the performance of two cache replacement algorithms:
 - > What type of simulation model should be used?
 - > How long should the simulation be run?
 - What can be done to get the same accuracy with a shorter run?
 - > How can one decide if the random-number generator in the simulation is a good generator?

Part VI: Queueing Theory

- □ Introduction to Queueing Theory
- □ Analysis of A Single Queue
- Queueing Networks
- Operational Laws
- Mean Value Analysis and Related Techniques
- Convolution Algorithm
- Advanced Techniques

Example VI

The average response time of a database system is three seconds. During a one-minute observation interval, the idle time on the system was ten seconds.

Using a queueing model for the system, determine the following:

- System utilization
- Average service time per query
- Number of queries completed during the observation interval
- > Average number of jobs in the system
- Probability of number of jobs in the system being greater than 10
- > 90-percentile response time
- > 90-percentile waiting time

The Art of Performance Evaluation

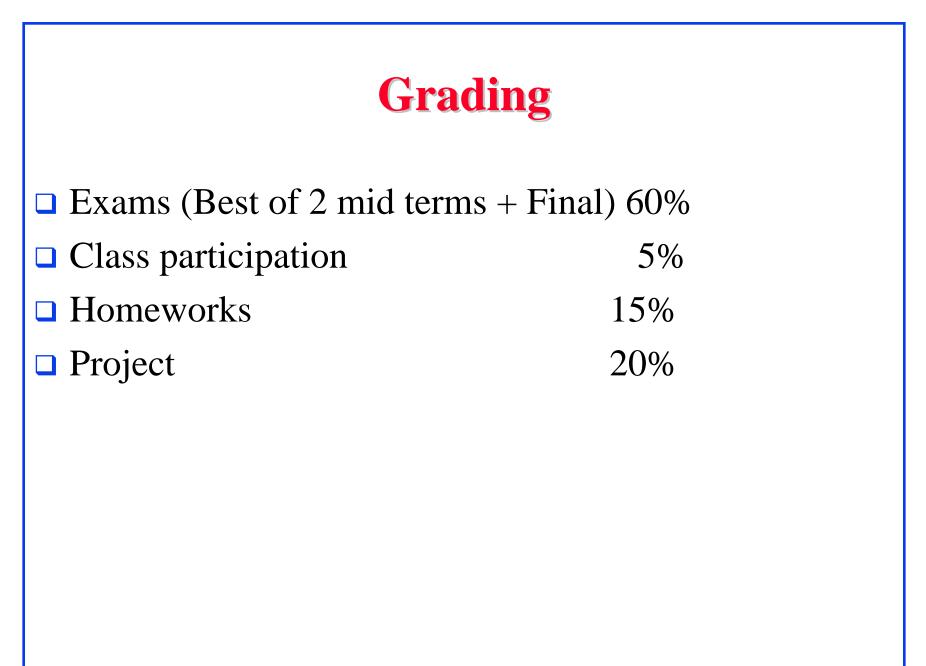
Given the same data, two analysts may interpret them differently.

Example:

The throughputs of two systems A and B in transactions per second is as follows:

System	Workload 1	Workload 2
A	20	10
В	10	20

		Possił	ole Soluti	ions	
Cor	mpare th	ne average:			
	System	Workload 1	Workload 2	Average	_
	A	20	10	15	_
	В	10	20	15	
	usion: I	i në two sys	stems are ec	luany go	00.
	•		h system B		ase
	System	Workload 1	Workload 2	Average	ase
	System A				ase
	System A B	Workload 1 2 1	Workload 2	Average 1.25 1	ase


Solutions (Cont)

□ Compare the ratio with system A as the base

System	Workload 1	Workload 2	Average
А	1	1	1
В	0.5	2	1.25

Conclusion: System B is better than A.

- Similar games in: Selection of workload, Measuring the systems, Presenting the results.
- □ Common mistakes will also be discussed.

1-23

Prerequisites

- **CSE 131: Computer Science I**
- **CSE** 126: Introduction To Computer Programming
- CSE 260M: Introduction To Digital Logic And Computer Design (Not required)
- Basic Probability and Statistics

Prerequisite

General Statistics:

- > Mean, variance
- > Normal distribution
- Density function, Distribution function
- Coefficient of variation
 Correlation coefficient
- > Median, mode, Quantile
- Programming

Tentative Schedule

DateTopic	Chapter
1/19 Course Introduction	
1/24 Common Mistakes	2
1/26 Selection of Techniques and Metrics,	3, 4, 5
Types of Workloads, Workload Selection	
1/31 Workload Characterization	6
2/2 Data Presentation, Ratio Games	10,11
2/7 Summarizing Measured Data	12
2/21 Comparing Systems Using Random Data	13
2/23 Mid-Term Exam 1	

Tentative Schedule (Cont)

Date	Торіс	Chapter
2/28	Simple Linear Regression Models	14
3/2	Other Regression Models	15
3/7	Experimental Designs	16
3/9	Factorial Designs with Replication	18
3/14	Fractional Factorial Designs	19
3/16	One Factor Experiments	20
3/21	Two Factor Full Factorial Designs	22
	with Replications	
3/23	General Full Factorial Designs	23
3/28	Mid-Term Exam 2	

Tentative Schedule (Cont)

Date	Topic	Chapter
3/30	Introduction to Queueing Theory	30
4/4	Analysis of Single Queue, Queueing Networks	31, 32
4/6	Operational Laws	33
4/18	Analysis of Simulation Results	25
4/20	Random Number Generation	26
4/27	Random Variate Generation	28
5/2	Final Exam	
5/4	Final Grades	

Projects

□ A survey paper on a performance topic

- Workloads/Metrics/Analysis: Databases, Networks, Computer Systems, Web Servers, Graphics, Sensors, Distributed Systems
- Comparison of Measurement, Modeling, Simulation, Analysis Tools: NS2
- Comprehensive Survey: Technical Papers, Industry Standards, Products
- A real case study on performance of a system you are already working on
- Average 6 Hrs/week/person on project + 9 Hrs/week/person on class
- □ Recent Developments: Last 5 to 10 years \Rightarrow Not in books
- Better ones may be submitted to magazines or journals

Washington University in St. Louis

CSE567M

Projects (Cont)

- Develop a software monitor to observe the performance of a large multiprocessor system.
- □ Analyze the performance of a distributed game program running on a network of artificial intelligence systems.
- □ Compare the performance of several robot control algorithms.
- □ **Goal:** Provide an insight (or information) not obvious before the project.
- **Real Problems:** Thesis work, or job
- □ **Homeworks:** Apply techniques learnt to your system.

Example of Previous Case Studies

- Database Systems Performance Evaluation Techniques
- □ A Survey of Hardware Performance Analysis Tools
- Analytical Modeling of Beyond Visual Range Air Combat
- A Survey of Network Simulation Tools: Current Status and Future Development
- Performance Analysis of Data Encryption Algorithms
- Case Study of the Performance of a Gamma-Ray Event Parameterization Application
- □ Survey on Performance Analysis of MAC protocols
- A Summary of Network Traffic Monitoring and Analysis Techniques
- □ A Survey of Network Performance Monitoring Tools

Case Studies (Cont)

- Survey of Network Performance Monitoring Tools
- SNMP and Beyond: A Survey of Network Performance Monitoring Tools
- □ A Survey of Network Traffic Monitoring and Analysis Tools
- Operating System and Process Monitoring Tools
- □ A Survey of Performance Analysis Tools
- Processor workloads
- □ Case Study: Performance Analysis of a Diversified Router
- Performance Analysis of Wireless Sensor Networks
- An Overview of Software Performance Analysis Tools and Techniques: From GProf to DTrace

Survey of Software Monitoring and Profiling Tools Washington University in St. Louis CSE567M

Case Studies (Cont)

- From Poisson Processes to Self-Similarity: a Survey of Network Traffic Models A Historical View of Network Traffic Models
- □ A Survey of Network Traffic Models
- Verification and Validation of X-Sim: A Trace-Based Simulator
- A Performance Model for a Thermally Adaptive Application Implemented in Reconfigurable HW

Project Schedule

- Mon 3/07 Topic Selection
- Mon 3/14 References Due
- Mon 3/21 Outline Due
- Mon 4/11 First Draft Due -> Peer reviewed
- Mon 4/18 Reviews Returned

Mon 4/25 Final Report Due

Office Hours

- □ Monday/Wednesday:11 AM to 12 noon
- □ Office: Bryan 523
- Teaching Assistant:
 Michael Hall, Bryan 405G, mhall24@wustl.edu
 Office Hours: Thursday/Friday 2PM-3PM

Frequently Asked Questions

- Yes, I do use "curve". Your grade depends upon the performance of the rest of the class.
- All homeworks are due on the following Monday unless specified otherwise.
- □ Any late submissions, if allowed, will *always* have a penalty.
- One 8.4x11 sheet allowed in the exam. Book not allowed. Time limited.
- Exams consist of numerical as well as multiple-choice (truefalse) questions.
- □ There is negative grading on incorrect multiple-choice questions. Grade: +1 for correct. -1/(n-1) for incorrect.
- Everyone including the graduating students are graded the same way.

- Goal: To prepare you for correct analysis and modeling of any system
- □ There will be a self-reading and writing
- Get ready to work hard

Quiz 0: Prerequisites

True or False?

ΤF

 \Box \Box The mean of a uniform(0,1) variate 1.

 \Box \Box The sum of two normal variates with means 4 and 3 has a mean of 7.

- ☐ ☐ The probability of a fair coin coming up head once and tail once in two throws is 1.
- **The density function** f(x) approaches 1 as x approaches ∞ .

Given two variables, the variable with higher median also has a higher mean.

- \Box \Box The probability of a fair coin coming up heads twice in a row is 1/4.
- \Box \Box The difference of two normal variates with means 4 and 3 has a mean of 4/3.
- **The cumulative distribution function** F(x) approaches 1 as x approaches ∞ .
- □ □ High coefficient of variation implies a low variance and vice versa.

 \Box \Box If x is 0, then after x++, x will be 1.

Marks = Correct Answers _____ - Incorrect Answers _____ = ____