
Analysis of Sorting as a Streaming Application

Greg Galloway, ggalloway@wustl.edu (A class project report written
under the guidance of Prof. Raj Jain) Download

Abstract Expressing concurrency of applications has always been a challenging and error-prone task, yet
effective use of multi-core processors and hardware implementations requires that the concurrency of
applications be well represented and understood. One approach to the expression of concurrency is streaming.
In this paper I express the classic problem of sorting in the streaming paradigm, and explore various
algorithmic and architectural design parameters.

Keywords: Sorting, Auto-Pipe, Sorting, X-Language, Performance Modeling

Table of Contents:

1 Introduction
2 Auto-Pipe Streaming Application Development Environment

2.1 Analysis Techniques
3 Sorting Application

3.1 Benefits of Streaming Approach
3.2 Mapping Alternatives

4 Performance Results
4.1 Benefits and Drawbacks of Initial Presentation
4.2 Application of Performance Techniques
4.3 Improvements to Analysis

5 Applied Performance Techniques
5.1 Result Analysis

6 Summary
7 References
8 Acronyms

1 Introduction
With multi-core processors becoming the standard for general-purpose computing, there has been an increase
of interest in parallel processing topics, specifically parallel algorithms. A relatively new approach is the
stream programming paradigm. Expanding upon the traditional shared-memory programming paradigm and
the message-passing programming paradigm, stream computing has been introduced as a more data-centric
approach to authoring parallel applications.
There are many languages that support stream computing. It has been argued that languages expressing
streams represent a better mechanism for reasoning about concurrency than thread-based approaches. The X
Language [Franklin06, Tyson06] is a stream-based coordination language for hybrid systems (systems with
architecturally diverse components, such as FPGAs, GPUs, etc.).
This paper describes the classic sorting problem in terms of a streaming computation. Variations examined
include the degree of pipelining vs. data parallelism, the performance of the sorting application when

Sorting as a Streaming Application Using Auto-Pipe

1 of 10

deployed on multi-processors, and shared vs. common memory systems. The Auto-pipe design environment
was used to generate the data, which is also briefly described.

2 Auto-Pipe Streaming Application Development
Environment
Auto pipe is a performance-oriented development environment for hybrid systems. It concentrates on
applications that are represented primarily as dataflow graphs and is especially useful in dealing with
streaming applications placed on pipelined architectures. In Auto-Pipe, applications are expressed in the
X-language [Tyson06] as acyclic dataflow graphs. These graphs contain individual tasks called "blocks" and
are connected with interconnections called "edges". Blocks represent the computational tasks, and edges
indicate the type and flow of data between the blocks.
The implementations of the blocks are written in various languages for any subset of the available platforms.
Currently Auto-Pipe supports C for general-purpose processors, HDL (Hardware Description Language) for
FPGAs (Field Programmable Gate Arrays)[Gayen07], and assembly for network processors and DSPs (Digital
Signal Processors) [Chamberlain07]. Auto-Pipe further provides an extensible infrastructure for supporting a
wider variety of interconnection and computational devices, simulators, and languages.

2.1 Analysis Techniques

Built in analysis is lacking in the toolset itself, so making use of a good reference on systems performance
analysis [ex: Jain91] assist in making the best use of the results. Anyone who makes use of computer systems
should be able to analyze the performance of the systems they design, and be able to state the requirements.
There is a strong need to be able to consider the provided alternatives and to choose the solution that best
meets their needs [Jain91]. More on this topic will be discussed in a later section.

3 Sorting Application
Frequently large data sets are split into smaller groups before being sorted, and then merged in a different
step. Split blocks are used to quickly divide an incoming data stream, routing half of the incoming records to
another block, usually another split or a sort. After each group of records is sorted, they are then routed to a
merge block, which uses the simple merge sort to recombine the data. The particular sorting algorithm used by
the sort blocks is not significant; however in the results presented, comb sort [Lacey91] was used. Comb sort
was selected due to it being a reasonably efficient O(nlogn) in-place algorithm. The process of splitting the
data stream up can be done in a few different ways, shown below. The first figure demonstrates using two sort
blocks in combination with a single merge and split block. The second figure shows a topology that uses four
sort blocks, and figure 3 shows a topology consisting of eight sorts.

Sorting as a Streaming Application Using Auto-Pipe

2 of 10

Figure 1: Example Two Sort Topology

Figure 2: Example Four Sort Topology

Figure 3: Example Eight Sort Topology

3.1 Benefits of Streaming Approach

Sorting as a Streaming Application Using Auto-Pipe

3 of 10

The power of expressing the sorting application in these ways is that the computation supports a streaming
data model, where pipelining is used to enable the sort blocks to work on one group of records while the
merge blocks concurrently work on another group. In this model, pipeline-based parallelism and data
parallelism are both explicitly represented[Franklin06].
There are a few clear benefits to authoring applications using this approach. First, it is possible to build a
library of blocks that can be re-used [Tyson05]. This would enable application development primarily in the
coordination language without requiring implementation of individual blocks. Second, the data movement
between blocks is not something that needs to be explicitly managed by the application developer. The
X-coordination language already determines where data is to be delivered [Tyson06]. Third, algorithm
decomposition is known to the system, making it straightforward to adjust the mapping. This makes the
process of distributing the blocks to various compute resources much easier. Finally, the streaming data
paradigm is a natural approach to reasoning about the correctness of an application, which reduces the
chances of making programming errors [Gayen07]. Also, having this framework in place avoids the
complexity of correcting a synchronization error due to a missing lock in a shared-memory program.

3.2 Mappings

The Auto-pipe system supports
mapping of application blocks to a
variety of computational resources,
such as processors, FPGAs, etc.
Additionally it allows the mapping of
the application edges to different
interconnect resources. For this
analysis, the mapping is constrained
to cores within a chip multiprocessor
and uses shared memory as the
underlying interconnect resource.
The blocks mapped to the processor
are expressed in C/C++, using a
model for an x86 processor core.
Performance was predicted for two,
four, and eight sort application
topologies (i.e., those shown in the
previous figures), executing on up to
eight processor cores. Table 1 shows
the mappings used. No assumptions
are made that the mappings selected
were optimal, but they are reasonable
in that they evenly divide the sort
blocks (the most computationally
expensive) as evenly as possible
across the processors.

Sorting as a Streaming Application Using Auto-Pipe

4 of 10

4 Performance Results
The experimental results are generated from simulations sorting 64-bit records (32 bits of key and 32 bits of
tag). The input block reads one million records from a file, then sends them to the split block. All data is
delivered via 256 record messages. One of the primary figures of merit is the latency to complete the sorting
of these one million records (measured from the time the first element is provided to the initial split block to
the time the last element is output from the final merge block). The results are from the performance
evaluation subsystem within Auto-pipe, known as X-Sim. The use of X-Sim allows us to explore various
hardware configurations that are not physically available, such as higher processor counts and FPGAs. X-Sim
has been shown to be highly accurate in validation experiments [Gayen07].
Starting with the 2-sort topology of Figure 1, Figure 4 shows an event timeline of the sorting application
mapped to four processors and assuming no delay in any of the communication links. The three event
classifications are avl for available, in for input, and out for output. The avl event indicates the time when a
data value is available at the input of a block. The in event indicates the time when the data is consumed by
the block, and the out event indicates when data is produced at the output port of the block. Communication
delays are modeled at a fixed delay, which is set to zero for the first simulation. This means that the out
timestamps for one block match the in timestamps for the preceding block(s).

Figure 4: Timeline for 2-sort, 4-processor mapping with zero communication delay

In Figure 5, we see the timeline for a 4-sort, 4-processor topology. Although we can observe many traits, and
a large amount of information is presented, these graphs do little to give precise insight into the effects of
various parameters. Generalizations can be made, but without in depth analysis, this data is being used to
generate pretty pictures.

Sorting as a Streaming Application Using Auto-Pipe

5 of 10

Figure 5: Timeline for 4-sort, 4-processor mapping with zero communication delay

4.1 Benefits and Drawbacks of Initial Presentation

There are many reasons why the timeline plots are useful. For one, they contain almost the full set of data.
Although the events create solid regions, it comes as close as realistically possible to displaying all events on a
single graph. The interactions between blocks can be clearly seen, allowing these graphs to be a good check
for plausibility. The time required for processing the whole data set can be approximated and compared for
different trials. So, although useful for many purposes, displaying the information this way is not ideal.
Representing the data in this way gives access to volumes of information, but at what costs? There are not
many extremely clear assumptions one can make that are specific enough to be of use. Exact numeric metrics
cannot be drawn from the graphs. Also, the frequency of events prevents having both a timeline that contains
all events and a granularity small enough to inspect specific situations. Conclusions drawn are either educated
guesses or approximations. Also, the data is presented without any pre-analysis. It's simply printed out in its
entirety. While this presents the whole picture, it leaves little opportunity, in and of itself, for further
inspection.

4.2 Application of Performance Techniques

Many performance techniques can be applied at each step in the simulation process. Selecting metrics and
evaluation techniques are key steps in any performance evaluation project [Jain91]. For the sorting
application, there was little attention paid to the analytical modeling, as the simulation had been well-verified,
and could be adjusted as the project progressed. Measurement should also be done to demonstrate that the
simulations are both useful and accurate.
The workload was guessed at initially, with values ranging from a few records (10-100) to a few million.
Through various trials it was determined that one million records gave consistent results without causing
undesired side-effects. Considerations included disk access, reliability, repeatability, time-per-trial, and how
the records would be processed. If the number of records exceeded a given section of memory, there was the
possibility of invoking additional delays due to caching. If the number of records was too small, small delays
due to seemingly random system processes would play a part in the results. Also, the number of records
should be chosen to divide well into each topology, this was to allow each split block to evenly divide each
group of records.

Sorting as a Streaming Application Using Auto-Pipe

6 of 10

4.3 Improvements to Analysis

Some performance techniques were simplified or omitted entirely. Workload selection was not approached
artistically, but rather as a guess-and-check sort of problem. Another glaring issue was the specific selection
of metrics. All trials should have been approached in a way that would generate specific numeric results.
Storing all the intermediate data is unrealistic, and simply keeping a graph for each is insufficient. If metrics
were determined, they would accurately represent the most relevant information provided by each trial.
The processing of the data is another focus that could have been more thoroughly explored. Summarizing the
trials by single numbers would allow application of probability and statistical concepts. This would further
allow the comparison of the systems with a good approximation of how representative it is of the population.
Comparison of multiple alternatives would draw more concise conclusions, and help determine appropriate
sample sizes. Finally, factors were not appropriately considered and their influence extracted from the
simulations. This causes the results to be too generalized to be significant, and prevents some of the deeper
insights from being clear.
Applying regression models would allow prediction of results that were not run due to time constraints. Using
these regression models, visual verification helps lead to appropriate conclusions, and helps avoid the problem
of having a high coefficient of determination with a poor model. Using the techniques of experimental design,
the initial trials could be run with more specific goals in mind. Rather than days or weeks of attempting to run
every simulation, a subset of simulations could be run and still yield the results being sought. Should this
reduced set of trials be insufficient, the results will help determine which trials to do next. Saving time would
allow the more important trials to be replicated, giving more statistically sound results.
Finally, there were many considerations to be made when inspecting the simulation. The transients were
clipped from the data, so the more pertinent results could be considered. The data set used for each trial was
exactly the same, so no randomness considerations played a part in the trials. The simulation language had
been thoroughly utilized and its soundness proven.

5 Applied Performance Techniques
Given such a variety of factors and values, it can be difficult and time consuming to run every possible trial.
The factors are listed in table 2 below. Due to the fact that the data set was held constant, and is common to
all trials, it does not need to be considered as a factor. For this analysis, a communication delay of zero will be
considered, the optimal mapping will be used, and processor counts will be constrained to one, two and four.
Sort counts of two, four and eight will be used.

5.1 Result Analysis

Sorting as a Streaming Application Using Auto-Pipe

7 of 10

The table below displays the overall time required to sort the one million record set with zero communication
delay.

Table 3: Overall Sort Processing Times (in seconds)

As expected, if only two sort blocks are used, increasing the processor count to four serves little purpose.

Figure 6: Quantile-Quantile plot

6 Summary
Based on the QQ plot, it can be seen that this model is perhaps not ideal. Not having a linear trend in the data
means that the model used was not sufficient, and that the results drawn may be inconclusive. This could be
due to not running enough trials, not considering the right design, or simply choosing the wrong factors to
analyze.
X-Sim is a simulator that has built to be used with the Auto-Pipe system. It allows users to simulate their
applications on a given set of heterogeneous resources before deployment, allowing both correctness
testing and performance analysis. The comprehensive gathering of trace data provides opportunities for the
user to analyze and better understand their application's behavior [Gayen07]. However, without proper
analysis skills, the results may be misinterpreted or misrepresented.

Sorting as a Streaming Application Using Auto-Pipe

8 of 10

References:
[Franklin06] M. A. Franklin, E. J. Tyson, J. Buckley, P. Crowley, and J. Maschmeyer.
"Auto-pipe and the X language: A pipeline design tool and description language"
In Proc. of Intl. Parallel and Distributed Processing Symp., Apr. 2006.
http://www.arl.wustl.edu/~pcrowley/ftbcm06.pdf

[Gayen06] Gayen et. al., "X-Sim: A Federated Heterogeneous Simulation Environment",
In Proceedings of 10th High Performance Embedded Computing (HPEC) Workshop, September 2006, pp.
75-76
Available at: http://sbs.cse.wustl.edu/pubs/gtfcc06.pdf

[Jain91] R. Jain,
"The Art of Computer Systems Performance Analysis: Techniques for Experimental Design, Measurement,
Simulation, and Modeling",
Wiley- Interscience, New York, NY, April 1991.

[Tyson06] Tyson, "Auto-Pipe and the X Language: A Toolset and Language for the Simulation, Analysis,
and Synthesis of Heterogeneous Pipelined Architectures",
Master's Thesis, Washington University Dept. of Computer Science and Engineering, August 2006.

[Chamberlain07] R. D. Chamberlain, E. J. Tyson, S. Gayen, M. A. Franklin, J. Buhler, P. Crowley, and J.
Buckley.
"Application Development on Hybrid Systems,"In Proc. of Supercomputing (SC07), Nov. 2007.
http://sc07.supercomputing.org/schedule/pdf/pap442.pdf

[Lacey91] S. Lacey and R. Box. A fast, easy sort. Byte, 16(4):315.ff., Apr. 1991. http://www.math.utah.edu
/pub/tex/bib/toc/byte1990.html#16(4):April:1991

[Tyson05] Tyson, "X Language Specification 1.0",
Washington University Dept. of Computer Science and Engineering Technical Report WUCSE-2005-47

[Gayen07] S. Gayen, E. J. Tyson, M. A. Franklin, and R. D. Chamberlain. "A federated simulation
environment for hybrid systems"
In Proc. of 21st Int.l Workshop on Principles of Advanced and Distributed Simulation, pages 198.207, June
2007. http://portal.acm.org/citation.cfm?id=1249025

Acronyms:
COV Coefficient of Variation
DSP Digital Signal Processor
FPGA Field Programmable Gate Array
GNU GNU's Not Unix
GPP General Purpose Processor
GPU Graphical Processor Units
HDL Hardware Description Language
Q-Q Quantile-Quantile

Sorting as a Streaming Application Using Auto-Pipe

9 of 10

Last modified on November 24, 2008
This and other papers on latest advances in performance analysis are available on line at
http://www.cse.wustl.edu/~jain/cse567-08/index.html

Back to Raj Jain's Home Page

Sorting as a Streaming Application Using Auto-Pipe

10 of 10

