General Full Factorial Designs With *k* Factors

Raj Jain
Washington University in Saint Louis
Saint Louis, MO 63130
Jain@cse.wustl.edu

These slides are available on-line at:

http://www.cse.wustl.edu/~jain/cse567-08/

Washington University in St. Louis

CSE567M

- Model
- Analysis of a General Design
- □ Informal Methods
 - > Observation Method
 - > Ranking Method
 - > Range Method

Washington University in St. Louis

CSE567M

General Full Factorial Designs With k Factors

 \square Model: k factors \Rightarrow 2^k-1 effects

k main effects

 $\begin{pmatrix} k \\ 2 \end{pmatrix}$ two factor interactions,

 $\begin{pmatrix} k \\ 3 \end{pmatrix}$ three factor interactions,

and so on.

Example: 3 factors A, B, C:

$$y_{ijkl} = \mu + \alpha_i + \beta_j + \xi_k + \gamma_{ABij} + \gamma_{ACik} + \gamma_{BCjk} + \gamma_{ABCijk} + e_{ijkl}$$

$$i = 1, \dots, a;$$
 $j = 1, \dots, b;$ $k = 1, \dots, c;$ $l = 1, \dots, r;$

Washington University in St. Louis

CSE567M

Model Parameters

Response in the lth replication with factors y_{ijkl} A, B, and C at levels i, j, and k, respectively.

Mean response μ

= Effect of factor A at level i α_i

 β_i = Effect of factor B at level j

= Effect of factor C at level k

= Interaction between A and B at levels i and j. γ_{ABij}

Interaction between A, B, C at levels i, j, and k. γ_{ABCijk} and so on

■ Analysis: Similar to that with two factors

$$\mu = \bar{y}_{\dots}$$

$$\alpha_i = \bar{y}_{i...} - \bar{y}_{...}$$

The sums of squares, degrees of freedom, and F-test also extend as expected. } Washington University in St. Louis

CSE567M

Case Study 23.1: Paging Process

Factors and Levels for Page Swap Study

Symbol	Factor		Levels	
		1	2	3
A	Page Replacement Algorithm	LRUV	FIFO	RAND
D	Deck Arrangement	GROUP	FREQY	ALPHA
Р	Problem Program	Small	Medium	Large
M	Memory Pages	24P	20P	16P

□ Total 81 experiments.

Case Study 23.1 (Cont)

□ Total Number of Page Swaps

Algor-	Prog-		GROUP			FREQ	Y	ALPHA		
ithm	ram	24P	20P	16P	24P	20P	16P	24P	20P	16P
LRUV	Small	32	48	538	52	244	998	59	536	1348
	Medium	53	81	1901	112	776	3621	121	1879	4639
	Large	142	197	5689	262	2625	10012	980	5698	12880
FIFO	Small	49	67	789	79	390	1373	85	814	1693
	Medium	100	134	3152	164	1255	4912	206	3394	5838
	Large	233	350	9100	458	3688	13531	1633	10022	17117
RAND	Small	62	100	1103	111	480	1782	111	839	2190
	Medium	96	245	2807	237	1502	6007	286	3092	7654
	Large	265	2012	12429	517	4870	18602	1728	8834	23134

$$y_{\text{max}}/y_{\text{min}} = 23134/32 = 723 \Rightarrow \log \text{ transformation}$$

Washington University in St. Louis

CSE567M

Case Study 23.1 (Cont)

□ Transformed Data For the Paging Study

Algor-	Prog-	(GROUP			FREQY			ALPHA		
ithm	ram	24P	20P	16P	24P	20P	16P	24P	20P	16P	
LRUV	Small	1.51	1.68	2.73	1.72	2.39	3.00	1.77	2.73	3.13	
	Medium	1.72	1.91	3.28	2.05	2.89	3.56	2.08	3.27	3.67	
	Large	2.15	2.29	3.76	2.42	3.42	4.00	2.99	3.76	$\mid 4.11 \mid$	
FIFO	Small	1.69	1.83	2.90	1.90	2.59	3.14	1.93	2.91	3.23	
	Medium	2.00	2.13	3.50	2.21	3.10	3.69	2.31	3.53	3.77	
	Large	2.37	2.54	3.96	2.66	3.57	4.13	3.21	4.00	$\mid 4.23 \mid$	
RAND	Small	1.79	2.00	3.04	2.05	2.68	3.25	2.05	2.92	3.34	
	Medium	1.98	2.39	3.58	2.37	3.18	3.78	2.46	3.49	3.88	
	Large	2.42	2.30	4.09	2.71	3.69	4.27	3.24	3.95	4.36	

Washington University in St. Louis

CSE567M

Case Study 23.1 (Cont)

□ Effects:

$$\alpha_1 = y_{1...} - y_{...} = 2.74 - 2.90 = -0.16$$

Main Effects								
	Level							
Factor	1	2	3					
\overline{A}	-0.16	0.02	0.14					
D	-0.36	0.07	0.29					
Р	-0.47	-0.02	0.49					
${ m M}$	-0.69	-0.01	0.70					

- Also
 - > Six two-factor interactions,
 - > Four three-factor interactions, and
 - > One four-factor interaction.

Washington University in St. Louis

CSE567M

Case Study 23.1: ANOVA Table

Compo-	Sum of	%Variation	DF	Mean
nent	Squares			Square
y	730.01		81	
$ar{y}$	681.21		1	
y- $ar{y}_{\cdots}$	48.80	100%	80	
Main Effects	45.80	93.85%	8	5.7
A	1.30		2	
D	6.10		2	
Р	12.30		2	
${ m M}$	26.20		2	
First-order Interactions	2.40	4.91%	24	0.1
${ m AD}$	0.07		4	
AP	0.02		4	
${ m AM}$	0.03		4	
DP	0.15		4	
${ m DM}$	1.96		4	
${ m PM}$	0.14		4	
Second-order Interactions	0.48	0.98%	32	0.015
ADP	0.05		8	
ADM	0.13		8	
APM	0.04		8	
DPM	0.26		8	
${ m Third} ext{-}{ m order}\;{ m Interaction}$	0.07	0.14%	16	0.004
(ADPM)				
Washington University in St. Louis	CSE567N	1		

23-9

Case Study 23.1: Simplified model

■ Most interactions except DM are small.

$$y_{ijkl} = \mu + \alpha_i + \beta_j + \gamma_k + \delta_l + \xi_{jl}$$

 $\mu = \operatorname{grand} \operatorname{mean}$ $\alpha_i = \operatorname{Effect} \operatorname{of} A$ $\beta_j = \operatorname{Effect} \operatorname{of} D$ $\gamma_k = \operatorname{Effect} \operatorname{of} P$

Where,

 δ_l = Effect of M

 ξ_{il} = Interaction between D and M.

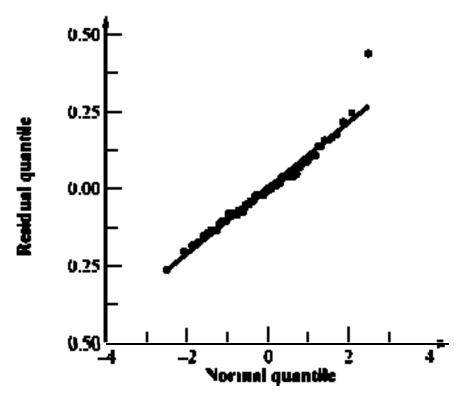
Washington University in St. Louis

CSE567M

Case Study 23.1: Simplified Model (Cont)

 Interactions Between Deck Arrangement and Memory Pages

			M	
		1	2	3
D	1	0.11	-0.30	0.19
	2	-0.05	0.09	-0.04
	3	-0.06	0.21	-0.15


Case Study 23.1: Error Computation

Algor-	Prog-	(GROUP			FREQY			ALPHA		
ithm	ram	24P	20P	16P	24P	20P	16P	24P	20P	16P	
LRUV	Small	0.18	0.08	-0.07	0.11	-0.04	-0.02	-0.05	-0.04	0.01	
	Medium	-0.05	-0.13	0.04	0.01	0.02	0.10	-0.18	0.07	0.11	
	Large	-0.13	-0.26	0.01	-0.14	0.04	0.03	0.22	0.04	0.04	
FIFO	Small	0.17	0.04	0.09	0.11	-0.02	-0.07	-0.08	-0.04	-0.08	
	Medium	0.05	-0.10	0.07	-0.02	0.04	0.05	-0.13	0.14	0.02	
	Large	-0.10	-0.20	0.02	-0.00	0.00	-0.03	0.25	0.09	-0.02	
RAND	Small	0.16	0.09	-0.06	0.14	-0.05	-0.07	-0.08	-0.08	-0.08	
	Medium	-0.10	0.04	0.04	-0.02	0.00	0.01	-0.11	-0.02	-0.02	
	Large	-0.17	0.44	0.04	-0.15	0.00	-0.01	0.16	-0.08	-0.01	

Washington University in St. Louis

CSE567M

Case Study 23.1: Visual Test

- □ Almost a straight line.
- Outlier was verified.

Washington University in St. Louis

CSE567M

Case Study 23.1: Final Model

LPS = 2.90+
$$A \begin{cases} -0.16 \\ +0.02 \\ +0.14 \end{cases}$$
 $D \begin{cases} -0.36 \\ +0.07 \\ +0.29 \end{cases}$ $P \begin{cases} -0.47 \\ -0.02 \\ +0.49 \end{cases}$ $M \begin{cases} -0.69 \\ -0.01 \\ +0.70 \end{cases}$

Replacement

 Algorithm
 1. GROUP
 1. Small
 1. 24P

 1. LRUV
 2. FREQY
 2. Medium
 2. 20P

 2. FIFO
 3. ALPHA
 3. Large
 3. 16P

- 2. FIFO
 - 3. RAND

$$+D \begin{cases} -0.27 & 1.40 & 1.30 \\ -0.60 & 0.80 & -0.20 & \pm 0.12 \\ 3.30 & -2.20 & -1.10 \end{cases}$$

Standard Error

- = Stdv of sample mean
- = Stdv of Error

Washington University in St. Louis

CSE567M

Observation Method

- □ To find the best combination.
- □ Example: Scheduler Design
- ☐ Three Classes of Jobs:
 - > Word processing
 - > Interactive data processing
 - > Background data processing
- □ Five Factors 2⁵⁻¹ design

Washington University in St. Louis

CSE567M

Example 23.1: Measured Throughputs

	No.	A	В	\mathbf{C}	D	\mathbf{E}	T_W	T_I	$\overline{T_B}$
_	1	-1	-1	-1	-1	1	15.0	25.0	$\overline{15.2}$
	2	1	-1	-1	-1	-1	11.0	41.0	3.0
	3	-1	1	-1	-1	-1	25.0	36.0	21.0
	4	1	1	-1	-1	1	10.0	15.7	8.6
	5	-1	-1	1	-1	-1	14.0	63.9	7.5
	6	1	-1	1	-1	1	10.0	13.2	7.5
	7	-1	$\boxed{1}$	$\lceil 1 \rceil$	-1	$\lceil 1 \rceil$	$\boxed{28.0}$	36.3	20.2
	8	1	$\overline{1}$	1	-1	-1	11.0	23.0	3.0
	9	-1	-1	-1	1	-1	14.0	66.1	6.4
	10	1	-1	-1	1	1	10.0	9.1	8.4
	11	-1	$\lceil 1 \rceil$	-1	$\lceil 1 \rceil$	$\lceil 1 \rceil$	$\boxed{27.0}$	34.6	15.7
	12	1	1	-1	1	-1	11.0	23.0	3.0
	13	-1	-1	1	1	1	14.0	26.0	12.0
	14	1	-1	1	1	-1	11.0	38.0	2.0
	15	-1	1	1	1	-1	25.0	35.0	17.2
	16	1	1	1	1	1	11.0	22.0	2.0
Washingto	n Univers	sity in St. Lou	is		CSE567M	I			©2008 Raj Ja

23-16

Example 23.1: Conclusions

To get high throughput for word processing jobs,:

- 1. There should not be any preemption (A=-1)
- 2. The time slice should be large (B=1)
- 3. The fairness should be on (E=1)
- 4. The settings for queue assignment and re-queueing do not matter.

Washington University in St. Louis

CSE567M

Ranking Method

□ Sort the experiments.

No.	A	В	С	D	Ε	T_W	T_I	T_B
7	-1		1	-1	$\begin{bmatrix} 1 \end{bmatrix}$	28.0	36.3	20.2
11	-1	1	-1	1	1	27.0	34.6	15.7
15	-1	1	1	1	-1	25.0	35.0	17.2
3	-1	1	-1	-1	-1	25.0	36.0	21.0
1	-1	-1	-1	-1	1	15.0	25.0	15.2
5	-1	-1	1	-1	-1	14.0	63.9	7.5
9	-1	-1	-1	1	-1	14.0	66.1	6.4
13	-1	-1	1	1	1	14.0	26.0	12.0
2		-1	-1	-1	-1	11.0	41.0	3.0
8	1	1	1	-1	-1	11.0	23.0	3.0
12	1	1	-1	1	-1	11.0	23.0	3.0
14	1	-1	1	1	-1	11.0	38.0	2.0
16	1	1	1	1	$\boxed{1}$	11.0	22.0	2.0
6	1	-1	1	-1	1	10.0	13.2	7.5
4	1	1	-1	-1	1	10.0	15.7	8.6
10	1	-1	-1	1	1	10.0	9.1	8.4

Washington University in St. Louis

CSE567M

Example 23.2: Conclusions

- 1. A=-1 (no preemption) is good for word processing jobs and also that A=1 is bad.
- 2. B=1 (large time slice) is good for such jobs. No strong negative comment can be made about B=-1.
- 3. Given a choice C should be chosen at 1, that is, there should be two queues.
- 4. The effect of E is not clear.
- 5. If top rows chosen, then E=1 is a good choice.

Range Method

- □ Range = Maximum-Minimum
- □ Factors with large range are important.

		Level		Range of
Factor	1	2	3	of Averages
Replacement Algorithm	2056	2986	3781	1725
Deck Arrangement	1584	2913	4326	2742
Problem Program	592	2047	6185	5593
Memory Size	305	2006	6512	6207

- Memory size is the most influential factor.
- □ Problem program, deck arrangement, and replacement algorithm are next in order.

Washington University in St. Louis

CSE567M

- A general k factor design can have k main effects, two factor interactions, three factor interactions, and so on.
- Information Methods:
 - > Observation: Find the highest or lowest response
 - > Ranking: Sort all responses
 - > Range: Largest smallest average response

Washington University in St. Louis

CSE567M

Exercise 23.1

Using the observation method on data of Table 23.8, find the factor levels that maximize the throughput for interactive jobs (T_I) . Repeat the problem for background jobs (T_B) .

Exercise 23.2

Repeat Exercise 23.1 using ranking method.

Washington University in St. Louis

CSE567M

Homework 23

□ Analyze the following results using observation and ranking methods. $\frac{1}{N_0}$ Analyze the following results using observation and

No.	A	В	\mathbf{C}	D	$\overline{\mathbf{E}}$	T
1	-1	-1	-1	-1	1	13.2
2	1	-1	-1	-1	-1	4.0
3	-1	1	-1	-1	-1	22.0
4	1	1	-1	-1	1	9.6
5	-1	-1	1	-1	-1	6.5
6	1	-1	1	-1	1	8.5
7	- 1	1	1	- 1	1	21.2
8	1	1	1	-1	-1	2.0
9	-1	-1	-1	1	-1	7.4
10	1	-1	-1	1	1	7.4
11	-1	1	-1	1	1	14.7
12	1	1	-1	1	-1	4.0
13	-1	-1	1	1	1	13.0
14	1	-1	1	1	-1	3.0
15	-1	1	1	1	-1	18.2
16	1	1	1	1	1	3.0

Washington University in St. Louis

CSE567M