# CSE 567M Computer Systems Analysis

Raj Jain
Washington University in Saint Louis
Saint Louis, MO 63130
Jain@cse.wustl.edu

These slides are available on-line at:

http://www.cse.wustl.edu/~jain/cse567-08/

Washington University in St. Louis

CSE567M



- Goal of this Course
- Contents of the course
- □ Tentative Schedule
- Project
- Grading

Washington University in St. Louis

CSE567M

#### **Goal of This Course**

- □ Comprehensive course on performance analysis
- □ Includes measurement, statistical modeling, experimental design, simulation, and queuing theory
- □ How to avoid common mistakes in performance analysis
- □ Graduate course: (Advanced Topics)
  - ⇒ Lot of independent reading and writing
  - ⇒ Project/Survey paper (Research techniques)

#### **Text Book**

□ R. Jain, "Art of Computer Systems Performance Analysis," Wiley, 1991, ISBN:0471503363
(Winner of the "1992 Best Computer Systems Book" Award from Computer Press Association")

# Objectives: What You Will Learn

- Specifying performance requirements
- Evaluating design alternatives
- Comparing two or more systems
- □ Determining the optimal value of a parameter (system tuning)
- □ Finding the performance bottleneck (bottleneck identification)
- Characterizing the load on the system (workload characterization)
- Determining the number and sizes of components (capacity planning)
- □ Predicting the performance at future loads (forecasting).

#### **Basic Terms**

- □ System: Any collection of hardware, software, and firmware
- Metrics: Criteria used to evaluate the performance of the system. components.
- Workloads: The requests made by the users of the system.

Washington University in St. Louis

CSE567M

#### **Main Parts of the Course**

- □ Part I: An Overview of Performance Evaluation
- □ Part II: Measurement Techniques and Tools
- □ Part III: Probability Theory and Statistics
- □ Part IV: Experimental Design and Analysis
- □ Part V: Simulation
- □ Part VI: Queueing Theory

# Part I: An Overview of Performance Evaluation

- □ Introduction
- Common Mistakes and How To Avoid Them
- □ Selection of Techniques and Metrics

Washington University in St. Louis

CSE567M

# **Example I**

- What performance metrics should be used to compare the performance of the following systems:
  - > Two disk drives?
  - > Two transaction-processing systems?
  - > Two packet-retransmission algorithms?

#### Part II: Measurement Techniques and Tools

- Types of Workloads
- Popular Benchmarks
- □ The Art of Workload Selection
- Workload Characterization Techniques
- Monitors
- Accounting Logs
- Monitoring Distributed Systems
- Load Drivers
- Capacity Planning
- □ The Art of Data Presentation
- Ratio Games

Washington University in St. Louis

CSE567M

# **Example II**

- Which type of monitor (software or hardware) would be more suitable for measuring each of the following quantities:
  - > Number of Instructions executed by a processor?
  - > Degree of multiprogramming on a timesharing system?
  - > Response time of packets on a network?

#### Part III: Probability Theory and Statistics

- Probability and Statistics Concepts
- □ Four Important Distributions
- Summarizing Measured Data By a Single Number
- Summarizing The Variability Of Measured Data
- Graphical Methods to Determine Distributions of Measured Data
- Sample Statistics
- Confidence Interval
- Comparing Two Alternatives
- Measures of Relationship
- Simple Linear Regression Models
- Multiple Linear Regression Models
- Other Regression Models

Washington University in St. Louis

CSE567M

# **Example III**

□ The number of packets lost on two links was measured for four file sizes as shown below:

| File Size | Link A | Link B |
|-----------|--------|--------|
| 1000      | 5      | 10     |
| 1200      | 7      | 3      |
| 1300      | 3      | 0      |
| 50        | 0      | 1      |

Which link is better?

Washington University in St. Louis

CSE567M

#### Part IV: Experimental Design and Analysis

- □ Introduction to Experimental Design
- □ 2<sup>k</sup> Factorial Designs
- □ 2<sup>k</sup>r Factorial Designs with Replications
- □ 2<sup>k-p</sup> Fractional Factorial Designs
- One Factor Experiments
- □ Two Factors Full Factorial Design without Replications
- □ Two Factors Full Factorial Design with Replications
- □ General Full Factorial Designs With *k* Factors

Washington University in St. Louis

CSE567M

# **Example IV**

- □ The performance of a system depends on the following three factors:
  - > Garbage collection technique used: G1, G2, or none.
  - > Type of workload: editing, computing, or AI.
  - > Type of CPU: C1, C2, or C3.

How many experiments are needed? How does one estimate the performance impact of each factor?

#### **Part V: Simulation**

- □ Introduction to Simulation
- Types of Simulations
- Model Verification and Validation
- Analysis of Simulation Results
- □ Random-Number Generation
- □ Testing Random-Number Generators
- □ Random-Variate Generation
- Commonly Used Distributions

Washington University in St. Louis

CSE567M

# **Example V**

- In order to compare the performance of two cache replacement algorithms:
  - > What type of simulation model should be used?
  - > How long should the simulation be run?
  - > What can be done to get the same accuracy with a shorter run?
  - > How can one decide if the random-number generator in the simulation is a good generator?

Washington University in St. Louis

CSE567M

# Part VI: Queueing Theory

- □ Introduction to Queueing Theory
- Analysis of A Single Queue
- Queueing Networks
- Operational Laws
- Mean Value Analysis and Related Techniques
- Convolution Algorithm
- Advanced Techniques

Washington University in St. Louis

CSE567M

# **Example VI**

□ The average response time of a database system is three seconds. During a one-minute observation interval, the idle time on the system was ten seconds.

Using a queueing model for the system, determine the following:

- > System utilization
- > Average service time per query
- Number of queries completed during the observation interval
- > Average number of jobs in the system
- > Probability of number of jobs in the system being greater than 10
- > 90-percentile response time
- > 90-percentile waiting time

Washington University in St. Louis

CSE567M

#### The Art of Performance Evaluation

□ Given the same data, two analysts may interpret them differently.

#### **Example:**

□ The throughputs of two systems A and B in transactions per second is as follows:

| System | Workload 1 | Workload 2 |
|--------|------------|------------|
| A      | 20         | 10         |
| В      | 10         | 20         |

#### **Possible Solutions**

□ Compare the average:

| System | Workload 1 | Workload 2 | Average |
|--------|------------|------------|---------|
| A      | 20         | 10         | 15      |
| В      | 10         | 20         | 15      |

Conclusion: The two systems are equally good.

□ Compare the ratio with system B as the base

| System | Workload 1 | Workload 2 | Average |
|--------|------------|------------|---------|
| A      | 2          | 0.5        | 1.25    |
| В      | 1          | 1          | 1       |

Conclusion: System A is better than B.

## **Solutions (Cont)**

□ Compare the ratio with system A as the base

| System | Workload 1 | Workload 2 | Average |
|--------|------------|------------|---------|
| A      | 1          | 1          | 1       |
| В      | 0.5        | 2          | 1.25    |

Conclusion: System B is better than A.

- □ Similar games in: Selection of workload, Measuring the systems, Presenting the results.
- □ Common mistakes will also be discussed.

# **Grading**

□ Exams (Best of 2 mid terms + Final) 60%

□ Class participation 5%

□ Homeworks 15%

□ Project 20%

Washington University in St. Louis

CSE567M

# **Prerequisites**

- □ CSE 131: Computer Science I
- □ CSE 126: Introduction To Computer Programming
- □ CSE 260M: Introduction To Digital Logic And Computer Design (Not required)
- Basic Probability and Statistics

Washington University in St. Louis

CSE567M

# **Prerequisite**

- □ Statistics:
  - > Mean, variance
  - > Normal distribution
  - > Density function, Distribution function
  - Coefficient of variationCorrelation coefficient
  - > Median, mode, Quantile
- C Programming

Washington University in St. Louis

CSE567M

#### **Tentative Schedule**

| <b>8/27</b>  | Course Introduction                            |
|--------------|------------------------------------------------|
| <b>9</b> /1  | Memorial Day Holiday - No class                |
| <b>9</b> /3  | Common Mistakes Chapter 2                      |
| <b>9/08</b>  | Selection of Techniques and Metrics Chapter 3  |
|              | <ul><li>Types of Workloads Chapter 4</li></ul> |
|              | <ul><li>Workload Selection Chapter 5</li></ul> |
| <b>9/10</b>  | Workload Characterization Chapter 6            |
| <b>9/15</b>  | Data Presentation Chapter 10                   |
|              | <ul><li>Ratio Games Chapter 11</li></ul>       |
| <b>9</b> /17 | Summarizing Measured Data Chapter 12           |
| <b>9</b> /22 | Comparing Systems Using Random Data Chapter    |
| 13           |                                                |
| <b>9</b> /24 | Comparing Systems Using Random Data (Cont)     |
| <b>9</b> /29 | Mid-Term Exam 1                                |

CSE567M

|                             | Tentative Schedule (Cont)                                                                 |
|-----------------------------|-------------------------------------------------------------------------------------------|
| <b>1</b> 0/1                | Simple Linear Regression Models Chapter 14                                                |
| <b>1</b> 0/6                | Other Regression Models Chapter 15                                                        |
| <b>10/08</b>                | Experimental Designs Chapter 16                                                           |
|                             | ✓ 2k Experimental Designs Chapter 17                                                      |
| <b>1</b> 0/13               | Factorial Designs with Replication Chapter 18                                             |
| <b>1</b> 0/15               | Fractional Factorial Designs Chapter 19                                                   |
| <b>10/20</b>                | One Factor Experiments Chapter 20                                                         |
|                             | <ul> <li>Two Factor Full Factorial Design w/o</li> <li>Replications Chapter 21</li> </ul> |
| <b>□</b> 10/22              | Two Factor Full Factorial Designs with                                                    |
|                             | Replications Chapter 22                                                                   |
|                             | <ul> <li>General Full Factorial Designs Chapter 23</li> </ul>                             |
| <b>□</b> 10/27              | Introduction to Simulation Chapter 24                                                     |
| <b>1</b> 0/29               | Introduction to Simulation (Continued) Chapter 24                                         |
| □ 11/3 Washington Universit | Mid-Term Exam 2 y in St. Louis CSE567M ©2008 Raj Jain                                     |

| <b>Tentative</b> | Sch | <b>nedu</b> l | le ( | C | ont | t) |
|------------------|-----|---------------|------|---|-----|----|
|                  |     |               | (    |   |     |    |

| 1 chicach ( Cont.)                                                               |
|----------------------------------------------------------------------------------|
| Analysis of Simulation Results Chapter 25                                        |
| Random Number Generation Chapter 26                                              |
| Testing Random Number Generators Chapter 27 Random Variate Generation Chapter 28 |
| Introduction to Queueing Theory Chapter 30 Analysis of Single Queue Chapter 31   |
| Queueing Networks Chapter 32                                                     |
| <ul> <li>Operational Laws Chapter 33</li> </ul>                                  |
| Operational Laws (Cont)                                                          |
| Mean-Value Analysis Chapter 34                                                   |
| Convolution Algorithm Chapter 35                                                 |
| TBD                                                                              |
| Final Exam                                                                       |
| Class Meeting: Final Grades                                                      |
|                                                                                  |

Washington University in St. Louis

CSE567M

# **Projects**

- A survey paper on a performance topic
  - Workloads/Metrics/Analysis: Databases, Networks,
     Computer Systems, Web Servers, Graphics, Sensors,
     Distributed Systems
  - Comparison of Measurement, Modeling, Simulation, Analysis Tools: NS2
  - Comprehensive Survey:
     Technical Papers, Industry Standards, Products
- A real case study on performance of a system you are already working on
- Average 6 Hrs/week/person on project + 9 Hrs/week/person on class
- $\square$  Recent Developments: Last 5 to 10 years  $\Rightarrow$  Not in books
- Better ones may be submitted to magazines or journals

Washington University in St. Louis

CSE567M

# **Example of Previous Case Studies**

- Measure the performance of a remote procedure call mechanism used in a distributed system.
- Measure and compare the performance of window systems of two artificial intelligence systems.
- Simulate and compare the performance of two processor interconnection networks.
- Measure and analyze the performance of two microprocessors.
- Characterize the workload of a campus timesharing system.
- □ Compute the effects of various factors and their interactions on the performance of two text-formatting programs.
- Measure and analyze the performance of a distributed information system.

Washington University in St. Louis

CSE567M

## **Case Studies (Cont)**

- Simulate the communications controllers for an intelligent terminal system.
- Measure and analyze the performance of a computer-aided design tool.
- Measure and identify the factors that affect the performance of an experimental garbage collection algorithm.
- Measure and compare the performance of remote procedure calls and remote pipe calls.
- Analyze the effect of factors that impact the performance of two RISC processor architectures.
- Analyze the performance of a parallel compiler running on a multiprocessor system.

Washington University in St. Louis

CSE567M

# **Projects (Cont)**

- Develop a software monitor to observe the performance of a large multiprocessor system.
- Analyze the performance of a distributed game program running on a network of artificial intelligence systems.
- Compare the performance of several robot control algorithms.
- □ Goal: Provide an insight (or information) not obvious before the project.
- □ Real Problems: Thesis work, or job
- ☐ Homeworks: Apply techniques learnt to your system.

Washington University in St. Louis

CSE567M

# **Project Schedule**

Mon 10/6/06 Topic Selection

Mon 10/20/06 References Due

Mon 10/27/06 Outline Due

Mon 11/10/06 First Draft Due -> Peer reviewed

Mon 11/17/06 Reviews Returned

Mon 11/24/06 Final Report Due

Washington University in St. Louis

CSE567M

#### **Office Hours**

■ Monday: 11 AM to 12 noon

Wednesday: 3:30 PM to 4:30PM

□ Office: Bryan 405D

□ Grader: Chakchai So-In, cs5@cec.wustl.edu

Washington University in St. Louis

CSE567M

# **Frequently Asked Questions**

- ☐ Yes, I do use "curve". Your grade depends upon the performance of the rest of the class.
- □ All homeworks are due on the following Monday unless specified otherwise.
- □ Any late submissions, if allowed, will \*always\* have a penalty.
- □ One 8.4x11 sheet allowed in the exam. Book not allowed. Time limited.
- Exams consist of numerical as well as multiple-choice (true-false) questions.
- □ There is negative grading on incorrect multiple-choice questions. Grade: +1 for correct. -1/(n-1) for incorrect.
- Everyone including the graduating students are graded the same way.

Washington University in St. Louis

CSE567M



- □ Goal: To prepare you for correct analysis and modeling of any system
- □ There will be a self-reading and writing
- Get ready to work hard

Washington University in St. Louis

CSE567M

# Quiz 0: Prerequisites

| True or False?                                                                                           |
|----------------------------------------------------------------------------------------------------------|
| T F                                                                                                      |
| ☐ ☐ The sum of two normal variates is normal.                                                            |
| $\Box$ The sum of two normal variates with means 4 and 3 has a mean of 12.                               |
| ☐ ☐ The probability of a fair coin coming up head once and tail once in two throws is 1.                 |
| $\Box$ The density function f(x) approaches 1 as x approaches $\infty$ .                                 |
| lacktriangle $lacktriangle$ Given two variables, the variable with higher median also has a higher mean. |
| $\Box$ The probability of a fair coin coming up heads twice in a row is 1/4.                             |
| $\Box$ The difference of two normal variates with means 4 and 3 has a mean of 4/3.                       |
| $\Box$ The cumulative distribution function $F(x)$ approaches 1 as x approaches $\infty$ .               |
| High coefficient of variation implies a low variance and vice versa.                                     |
| $\Box$ If x is 0, then after x++, x will be 1.                                                           |
| Marks = Correct Answers Incorrect Answers =                                                              |
|                                                                                                          |
| Washington University in St. Louis CSE567M ©2008 Raj Jain                                                |
|                                                                                                          |