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Verification and Validation of X-Sim: A Trace-Based 
Simulator
Saurabh Gayen, sg3@wustl.edu

Abstract X-Sim is a trace-based simulator that is under current development..  It provides a way to easily simulate
any application on a heterogeneous set of resources consisting of general purpose processors (GPPs), field
programmable gate arrays (FPGAs) and, in the future, other computational elements.  This paper attempts to
verify and validate X-Sim, with the end goal of allowing the simulator to generate reasonably confident
application performance estimates.
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1 Introduction
For any simulation to have credibility, it is necessary to verify and validate the results of the simulation. This
allows target users to have sufficient confidence that results generated by a simulation run reflect real world
operation to a large degree. This paper focuses on the verification and validation of X-Sim [Gayen05], a simulator
built for the Auto-Pipe [Tyson06] system. The Auto-Pipe system is a comprehensive package focused on
facilitating the deployment and optimization of scientific applications on heterogeneous resources. Heterogeneous
resources are defined to include physical resources such as general purpose processors (GPPs), field
programmable gate arrays (FPGAs), graphical processor units (GPUs), etc., and their physical interconnects such
as ethernet, PCI, etc. X-Sim is a vital component of the system, as it allows correctness checking and performance
prediction before actual deployment.  Performance predictions can be used to create more optimal mappings of the
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application to a given resource set.  This paper uses a single example to illustrate application deployment in the
Auto-Pipe system, as well as simulation of the deployed application. Verification and validation is performed on
the sample application, while illustrating how similar techniques can be applied to any application deployed in the
Auto-Pipe system.
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2 X-Sim
2.1 Auto-Pipe: the Bigger Picture

X-Sim is a simulator built for the Auto-Pipe system [Gayen06].  Auto-Pipe is a performance-oriented
development environment for heterogeneous systems.  It concentrates on streaming applications placed on
pipelined architectures.  In this system, applications are expressed in the X Language [Tyson05] as dataflow
graphs. In these graphs, individual computational tasks called blocks are connected with interconnects called
edges indicating the type and flow of data between blocks.  The actual implementations of the blocks are written
in various languages for any subset of the available platforms (e.g., C for general-purpose processors, HDL for
FPGAs, assembly for network processors and DSPs).  Applications may be mapped onto arbitrary sets of mixed
physical resources.  Such resources may be a combination of general-purpose processors (e.g., x86, PowerPC,
ARM), chip multiprocessors (e.g., Intel IXP network processor, multi-core x86 processors), and reconfigurable
hardware devices (e.g., FPGAs). 

2.2 Sample Application Mapping

Throughout this paper, the simple example application mapping problem shown in Figure 1 will be used for
illustrative purposes.

Figure 1 : A sample application in the Auto-Pipe System

The example consists of four blocks mapped to four processors.  This single mapping will be used to illustrate the
various simulation verification and validation techniques presented in this paper.  Block A, mapped to a processor
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processor1, is a generator block that creates ten pairs of 32-bit unsigned numbers.  These unsigned32's are
streamed in parallel through a pair of  add1 blocks, B[1] and B[2].  In addition to adding one to the unsigned32
passing through, each B block runs long loops that increment a dummy temp value n number of times, where n is 
a random variable uniformly distributed between 200,000 and 250,000.  The random number generator used is
the GNU C library's rand() function. The two B blocks are mapped to separate processors, processor2 and
processor3.  Their outputs are streamed into a summation block, C, mapped to processor processor4.  All of the
processors used in this example are identical Pentium 4 machines, with speed 3.4Ghz and memory 512MB.

2.3 X-Sim Details

Within the Auto-Pipe system, X-Sim [Gayen06] provides functional simulation to determine application
correctness, and performance simulation to profile individual components of the application.  The results of
performance simulation may then be used to improve the performance either manually or automatically using an
optimization application currently under development, X-Opt.  X-Sim provides an environment in which multiple
simulators are seamlessly combined to simulate X Language applications mapped to heterogeneous devices.  The
X-Sim infrastructure is open-ended to allow support for a range of simulators, from low-level discrete-event and
cycle-accurate simulators to rough estimates from emulators and native execution.  X-Sim records timestamps for
each block.  Whenever data enters or exits a block, a copy of the data is stored and a timestamp is recorded.  By
the end of the simulation run, a complete trace of all data and timestamps is generated.  The data traces are useful
in correctness checking, and the timestamps are useful in understanding system performance.  The traces represent
a comprehensive set of data gathered from the simulation.

Back to Table of Contents

3 Simulation Theory
For any simulation project, there are three main entities: the real world system, the analytic model, and the
simulation program [Sargent 04]. Briefly, the real world system is the system we want to study, the analytic model
is the analytic representation of the system, and the simulation program is the computer program that is used to
simulate the system. The rest of this section describes how the example application fits into this view of
simulation.

3.1 The Real World System

The real world system consists of all the real world elements we are interested in studying. In the Auto-Pipe
system, the system consists of the application that we want to optimize, the physical computational resources such
as computers and specialized hardware, and the communication interconnects that connect the 
computational resources. In our example, the application consists of the five code blocks introduced in the
previous section. The computational resources consist of the four pentiums described before, and the interconnect
resources consist of the ethernet links between the Pentiums. All these components make up the system that we
want to study, run, and optimize.

3.2 The Analytic Model

The analytic model is the analytic representation of the system. It includes representations of each of the real
world system components, and has equations and guiding heuristics that characterize the behaviour of each
component. In the Auto-Pipe system, the entire application is treated as an M/M/1 queueing network. It is
assumed that each node (computational resource or interconnect resource) has exponentially distributed
inter-arrival and service times.
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3.3 The Simulation Program

The simulation program is written by a programmer to simulate the analytic model. X-Sim is written in C++, as is
the rest of the Auto-Pipe system. It is written in classic object oriented format, with classes built for individual
modules within the program.
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4 Verification and Validation Theory
4.1 Conceptual Model Validation: the System-Model Relationship

The queuing network model assumes that each node has exponentially distributed inter-arrival and service times.
These assumptions need to be validated statistically to conceptually validate the model [Balci 95]. Each of these
distributions' characteristics parameters are set according to results obtained from simulation runs. In accepting or
rejecting the analytic model, two types of errors are possible: Type I errors and Type II errors. Type I error is an
error where a valid model is rejected, and Type II error is an error where an invalid model is accepted. Type II
errors are considered particularly bad, and must be minimized. The process of validating that the analytic model
closely approximates the behavior of the real world is called conceptual model validation.

4.2 Model Verification: the Model-Program Relationship

Model verification is the process of verifying that the program runs correctly, in a manner that reflects the analytic
model. Techniques that can be used for model verification include walk-throughs, correctness proofs, and sanity
checks. For the example application, walk throughs were done to verify that data moved through the simulation
modules as expected for a few test cases. A rudimentary sanity check was done by confirming that block output
times occured chronologically after block input times. It is hard to quantify program correctness, and a technique
that can help in verification is an animation . A tool that shows the movement of data through the queue network
model is currently under construction. Once it is completed, it can help the programmer quickly locate suspicious
behaviour which might indicate the presence of programming errors.

4.3 Operational Validation: the System-Program Relationship

A major part of providing credibility to X-Sim's results is proving operational validity [Kleijnen 95]. Operational
validation is defined as the process of confirming that simulation results closely approximate real world results.
X-Sim runs are able to generate comprehensive timestamps for each data transaction that happens on any device.
Real world system runs, on the other hand, only generate means for the service time for each device. The 
difference occurs because simulators can gather data in a more non-obtrusive manner, affecting block performance
minimally. Real world executions, on the other hand, suffer a higher performance penalty if timestamps for each
and every data transaction are recorded. To minimize the effect on performance, only means can currently be
recorded from real world system runs. Additional work will be done in the future to enable timestamps to be
gathered for the real world system runs as well. This data can be used in operational validation if one keeps in
mind the fact that this more detailed trace capture has more significant effects on system performance. A
comprehensive set of experiments were run to analyze conceptual model validation (how closely the analytic
model approximates the real system) and operation validation (how closely simulation results match real system
results).

Back to Table of Contents 
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5 Experimental Results and Analysis
Several experiments were run to verify and validate the relationships between the system, the model, and the
program. 

5.1 Conceptual Model Validation Results

A single simulation run was done to check the underlying assumptions of the conceptual model, that the
inter-arrival times and service times of the nodes are exponentially distributed. The example application discussed
previously was simulated and timestamps captured for every data transaction. Note that in a single simulation run,
10000 jobs arrive and get serviced at every node in the queue network.  To check the assumptions underlying the
queuing model, the timestamps at the exit port of block B[1] were taken and processed to generate inter-arrival
times.  The Quantile-Quantile plot (hereafter referred to as Q-Q plot) is plotted below.

Figure 2: Q-Q Plot of Inter-Arrival Times for Block B[1]

The figure clearly shows that the arrival times are exponentially distributed.  Another assumption that needs to be
tested is to see if the distribution of the service times is also exponentially distributed.  To test this, a Q-Q plot of
the service times for block B[1] is shown below in Figure 3. 

.
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Figure 3: Q-Q plot of Service Times for Block B[1]

This figure shows that at least 5 data points are extreme outliers.  Excluding the 10 top outliers produces Figure 4,
shown below.  This figure is a bit clearer in showing the exponential distribution of the service times for block
B[1].
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Figure 4: Q-Q Plot of B[1] Service Times (excluding 10 outliers)

The analysis of inter-arrivals and service times being done at a single point in the queuing network.  To rigorously
test the model assumptions, the distribution of inter-arrival times as well as service times at every computational 
and inter-connect resource should tested.  To make this possible,  future work should include a comprehensive
statistical test for every node.  A graphical test is still a good way for the user to convince themselves that the
assumptions underlying the model are relatively safe.

5.2 Model Verification Results

For the example application, walk-throughs were done to verify that data moved through the simulation modules
as expected for a few test cases. A rudimentary sanity check was done by confirming that block output times
occurred chronologically after block input times. It is hard to quantify program correctness, and a technique that
can help in verification is an animation . A tool that shows the movement of data through the queue network
model is currently under construction. Once it is completed, it can help the programmer quickly locate suspicious
behavior which might indicate the presence of programming errors.

5.3 Operational Validation Results

To validate the simulation results against operational results, the application was run 5 times.  The means from
these runs is given in the following table:
 

Service Times System Runs (�s) Simulation Runs (�s)

Run Mean Standard 
Deviation Mean Standard 

Deviation
1 3036.68 unknown 3037.31 479.35
2 3255.19 unknown 3255.89 3014.38
3 3137.57 unknown 3138.10 7659.73
4 3030.52 unknown 3031.22 413.61
5 3110.39 unknown 3114.02 1885.79

overall mean 3114.07 3115.30
overall std dev. 91.45 91.42

Table 1: Results Summary from System and Simulation Runs

There are many important points to note here.  Let us examine the system run means first.  The five runs generated
an overall mean of 3114.07�s with a standard deviation of 91.45�s.  Using a t-table distribution with n=5, we
get a confidence interval of 3114.07�s?84.27�s at 95% confidence, which is a narrow band showing relatively
high confidence for the execution time.  The variability here is very low, and can be reduced even further by
simply doing more than five runs. Another measure of variation is the coefficient of variation (COV).  The COV
is calculated as the ratio of the standard deviation to the mean, and in this case it is only 0.029.  All the standard
deviations for the system runs are listed as "unknown".  This is because, as mentioned previously, real system runs
do not allow a comprehensive trace to be generated.  Only the means are recorded because they require a simple
running sum to be updated during actual execution, and thus have a minimal effect on the running time.

Let us now move our focus to the simulation run results.  Comparing the means for the individual simulation and
system runs, it is very clear right away that there is a high correlation between the simulated and actual results. 
Statistically, the correlation between the two is calculated to using the formula given below.  The correlation for
our data is extremely high, calculated to be 0.99989.  This is a very important value that can be automatically
calculated using the equation and can give a single figure to show the operational validity of the simulation
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.

Figure 5: System (x) and Simulation (y) Correlation Equation

Finally, let us examine the standard deviations for the simulation runs.  The standard deviations for runs 2, 3 and 5
are very high, with COV ratios of 0.93, 2.44, and 0.61.  These high COV values suggest that characterizing the
block performance simply using a mean and standard deviation will not provide a very accurate model. 
Examining the individual service times provided by X-Sim show that there are a few outliers that are skewing the
distribution away from the model.  These might represent times when unusual events like context switches or
heavy disk accesses occurred.  Excluding the top 5% gives the following revised data:
 

Service Times System Runs (�s) Simulation Runs (�s)

Run Mean Standard 
Deviation Mean Standard 

Deviation
1 3036.68 unknown 2991.67 201.41
2 3255.19 unknown 3017.09 208.41
3 3137.57 unknown 3001.13 209.53
4 3030.52 unknown 2970.57 198.45
5 3110.39 unknown 2984.16 199.61

overall  mean 3114.07 2992.92
overall std dev. 91.45 17.53

Table 2: Results When Top 5% Outliers are excluded
 Now the standard deviations are much lower and give us much more acceptable COVs.  Shown below is the Q-Q

plot for the service times when the 5% top outliers are excluded.

.
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Figure 5: Q-Q Plot of B[1] Service Times (excluding 5% outliers)

This plot displays normal like behavior but with short tails.  This matches what one would expect.  As discussed
before, B[1] iterates n times where n is a uniformly distributed variable.  The Q-Q plot above shows a uniform
distribution with normally distributed noise.

5.4 Summary

The behavior of block B[1] can be summarized from the above analysis.  Excluding 5% outliers, block B[1] runs
with normally distributed service times which can be represented by a simple confidence interval of
2992.92�s?5.32�s at 95% confidence.  However, the top 5% outliers represent an important factor because they
take a lot longer to execute, and they represent disruptive operations like context switching and disk accesses. 
One solution is to migrate to a more dedicated platform where those disruptive factor do not cause much of a
problem.  That would allow the block to simply be represented by an execution time of roughly 3ms?.04ms.
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6 Summary
X-Sim is a simulator that has built to be used with the Auto-Pipe system.  It allows users to simulate their
applications on a given set of heterogeneous resources before deployment, allowing both correctness testing and
performance analysis.  The comprehensive gathering of trace data provides opportunities for the user to analyze
and better understand their application's behavior.  However, for X-Sim to be trusted by potential, it requires
rigorous verification and validation.  Graphical displays help show the user that key assumptions are maintained. 
Statistical properties of the model, system, and simulation can be related to each other to be able to give
confidence intervals of performance estimates.  Unfortunately, the current measurement techniques in the system
and simulation are slightly different so comparing them is sometimes misleading, as seen in this case when the
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application being studied has very small service times that are prone to be overshadowed by overhead.  Future
studies on X-Sim should be done when more consistent measurement techniques have been implemented, and an
application that consists of blocks that take substantial time should be studied.  The end goal is to allow general
simulation validation for any application, and generate sufficiently confident performance estimates.  This would
allow users to create mappings that perform faster not only in simulations, but reliably in the real world too.
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Acronyms:
COV            Coefficient of Variation
DSP             Digital Signal Processor
FPGA           Field Programmable Gate Array
GNU            GNU's Not Unix
GPP             General Purpose Processor
GPU             Graphical Processor Units
HDL             Hardware Description Language
Q-Q             Quantile-Quantile
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