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Abstract
Network traffic models have evolved significantly over the lifetime of the Internet. The earliest models were
largely Poisson-based, designed for ease of analysis. The discovery of traffic self-similarity and long-range 
dependence required significant changes to traffic models. We examine this evolution from the early models,
through the discovery of self-similarity, to the modern systems that account for complexities such as the
impact of TCP congestion control, and practical modeling of arbitrary network traffic.
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1. Introduction

Network traffic modeling is used as the basis for the design of network applications and for capacity planning
of networking systems. Given the impact of poor choices in this arena, it is clear that the validity of the
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underlying models is of critical importance.

Most analytical queuing models of networking systems, such as switches, are driven by a mathematical
description of the network traffic. The factors used to evaluate a system are taken directly from the
underlying traffic model. This use requires that traffic models be both valid, resembling reality closely, and
sufficiently simple as to allow queuing analysis models to reach a steady-state.

Simulations have a lighter set of requirements. Simulations are still driven directly by factors derived from
network traffic models. Validity is still an important concern. Simplicity is less important. A simulation
needs a distribution that can be generated efficiently, but there is no requirement that the distribution be
amenable to mathematical treatment. A traffic model that allows for step-by-step generation is perfectly
adequate; no steady-state solution is desired.

1.1. Characteristics of Traffic Models

There are two major parameters generated by network traffic models: packet length distributions and packet
inter-arrival distributions. Other parameters, such as routes, distribution of destinations, etc., are of less
importance. Simulations that use traces generated by network traffic models usually examine a single node in
the network, such as a router or switch; factors that depend on specific network topologies or routing
information are specific to those topologies and simulations.

The problem of packet size distribution is fairly well-understood today. Existing models of packet sizes have
proven to be valid and simple. Most packet size models do not consider the problem of order in packet sizes.
For example, a TCP datagram in one direction is likely to be followed by a tiny ACK in the other direction
about half of one Round-Trip Time (RTT) later. We do not treat this problem in this paper, but focus on
inter-arrival distributions.

The problem of packet inter-arrival distribution is much more difficult. Understanding of network traffic has
evolved significantly over the years, leading to a series of evolutions in network traffic models.

1.2. Traffic Models

The oldest models were based on simple probability distributions with the assumption that these were correct
in large aggregations. For example, Poisson traffic distributions (with exponential inter-arrival times) were
frequently used in models (E.g., [Marathe82]). Unfortunately, this model was not very satisfactory. Real
network traffic exhibited clear bursts, and the models did not. New models were proposed to generate bursty
traffic [Jain86], [Heffes86].

In the early 1990s, a group at Bellcore gathered a large quantity of fine-grained, high-quality network traffic
measurements. Analysis of the data subsequently demonstrated clear evidence of self-similarity [Will00]. 
This explained the discrepancy between traffic models and real network traffic. Self-similar traffic models
are more difficult to create and analyze, and it is difficult to derive parameters for self-similar models from
real network traffic. Nevertheless, several models have evolved to generate self-similar traffic [Erramilli02]. 
Systems have been created to simplify analysis of existing traffic to compute realistic parameters for
self-similar models [Abry98].

1.3. Overview of Topics

In this paper, we will discuss network traffic models as they evolved, starting with Poisson models and
moving to the “bursty” models that evolved to attempt to fix the mismatch between models and reality. Next,
we will discuss self-similarity in some detail, as this phenomenon is not well-known in the networking
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community. After this, we will discuss the traffic models that attempt to apply self-similarity. Finally, we will
close with a discussion of the overall validity of current traffic models.

Back to Table of Contents

2. Non-Self-Similar Traffic Models

Early traffic models were derived from telecommunications models [Will00] and focused on simplicity of 
analysis. They generally operated under the assumption that aggregating traffic from a large number of
sources tended to smooth out bursts; that burstiness decreased as the number of traffic sources increased.
Most particularly, the earliest models ignored bursts completely (Poisson). Later refinements attempted to
add burstiness on top of Poisson distributions (Compound Poisson, Markov-modulated Poisson, Packet
Trains). During this time, self-similarity was completely unknown in traffic modeling and was largely
regarded as a mathematical oddity.

For each traffic model discussed, we provide an overview of the general concept, a discussion of the
mathematical perspective, and a discussion of the relevant uses in modeling and simulation. The discussion
of validity is deferred to the section on the advent of self-similar traffic.

2.1. Poisson Traffic Models

Poisson models have been in use in the literature since the advent of computer networks, and before that in
the telecommunications arena [Mandelbrot65]. Memoryless models are very attractive from an analytical
point of view [Frost94], and with proper selection of parameters a Poisson model can be fit to most network
traffic traces reasonably well for short periods.

Pure Poisson traffic models have a single parameter, the mean arrival rate (λ). Thus, packet inter-arrival times 
have an exponential distribution with mean . Packet arrivals over an interval [t1, t2] with t=t2-t1 have a 

Poisson distribution with mean tλ.

Poisson models are popular in queuing theory because they have attractive analytical properties: they are
memoryless, meaning that future behavior has no link to past behavior, recent or distant; and aggregation of
multiple Poisson streams generates a new Poisson stream with λ′=Σλ. Poisson queuing models have an easily

derived steady state equation , where μ is the departure rate and p0 is the probability of an empty 

system. This analysis is significantly more complex in other models.

It has been suggested [Frost94] that the networking community has held on to the Poisson model in the face
of contrary evidence because of these attractive properties.

2.2. Compound Poisson Traffic Models

In the compound Poisson model, the base Poisson model is extended to deliver batches of packets at once. 
The inter-batch arrival times are exponentially distributed, while the batch size is geometric [Jain86].
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Mathematically, this model has two parameters, λ, the arrival rate, and ρ in (0,1), the batch parameter. Thus,
the mean number of packets in a batch is , while the mean inter-batch arrival time is . Mean packet 

arrivals over time period t are .

The compound Poisson model shares some of the analytical benefits of the pure Poisson model: the model is
still memoryless, aggregation of streams is still (compound) Poisson, and the steady-state equation is still
reasonably simple to calculate, although varying batch parameters for differing flows would complicate the
derivation.

One complaint with compound Poisson models is that truly back-to-back packet arrivals are rare in practice
[Jain86]. This may no longer be the case. The argument in 1986 was that most network nodes were shared by
nonnetwork activities, and that packet processing generally took longer than packet transmission times. Thus,
the time between packets from a single node should be fairly large. However, modern CPUs are usually fast
enough to saturate the outgoing network link even under nonnetwork load.

2.3. Markov-Modulated Poisson Traffic Models

Simple Poisson models exhibit too little burstiness for realistic traffic. Particularly in the telecommunications
realm, packet arrivals come in bursts (when people are talking) and pause between bursts (when people are
silent). In 1986, voice and data were beginning to share telecommunications links, so research into traffic
models began to consider the superposition of traffic from multiple types of sources.

The real process underlying a voice network was considered too complex to model effectively. Researchers
sought a simplified model that still exhibited realistic characteristics. What was needed was a traffic model
where the arrival rate varied. However, in keeping with the voice model, it made sense to vary the arrival rate
in a quantized manner. The obvious solution was Markov-Modulated Poisson Processes (MMPPs)
[Heffes86].

A continuous-time Markov chain determines the arrival rate in a Poisson model. The Markov chain is a
two-state chain, each with an associated rate λ, and each state has a distinct mean sojourn time r, that is, an 
MMPP is defined by a 4-tuple (λ1,λ2,r1,r2). To determine these four parameters, a sample trace of real
network traffic is necessary. The MMPP parameters are selected to match the real traffic and model traffic
for the following characteristics:

mean packet arrival rate
variance-to-mean ratio of the number of arrivals over a short period
long-term variance-to-mean ratio of the number of arrivals
the third moment of the number of arrivals in a short period.

Bypassing the algebra, the authors of [Heffes86] derived a means of computing these values from a traffic
trace and a pair of time intervals [0,t1] and [0,t2].

This model still shares some useful characteristics with pure Poisson models. For example, if another stream
with rate λ′ is added to a MMPP (λ1,λ2,r1,r2), the resultant MMPP is (λ1+λ′,λ2+λ′,r1,r2). The model can
easily be extended to more than 2 states in the Markov Chain. An algebraic solution exists for the mean delay
of a packet arrival, and this solution still applies when more than 2 states are used in the Markov chain. The
process even allows for analytical evaluation of finite buffer situations. The evaluation process requires
solving a matrix of order 2(N+1) where N is the buffer size, but this is easily within the reach of modern
mathematics packages. Thus, if the model were correct, a router or switch designer could engineer the buffer 
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size for a given level of performance by analytical means.

Unfortunately, the analytical conclusions of the MMPP traffic model were validated by simulation based on
MMPP traffic generation, and the parameters were selected for voice traffic over telecommunications links.
As expected, the analytical results of the model and the results of the simulation matched very closely;
Poisson models were much less accurate. Given the known problems with traffic models of the era, a
validation against live traffic would have been more impressive.

2.4. Packet Trains

Another attempt at providing a bursty traffic model is found in Jain and Routhier’s Packet Trains model
[Jain86]. This model was principally designed to recognize that address locality applies to routing decisions;
that is, packets that arrive near each other in time are frequently going to the same destination. In generating
a traffic model that allows for easier analysis of locality, the authors created the notion of packet trains, a 
sequence of packets from the same source, traveling to the same destination (with replies in the opposite
direction).

Packet trains are optionally sub-divided into tandem trailers. Traffic between a source and a destination
usually consists of a series of messages back and forth. Thus, a series of packets go one direction, followed
by one or more reply packets, followed by a new series in the initial direction. The authors designate these
series of packets as tandem trailers within a single train and analyze the trailer characteristics as well as the
overall train characteristics.

Traffic quantity is then a superposition of packet trains, which generates substantial bursty behavior. This
refines the general conception of the compound Poisson model, which recognized that packets arrived in
groups, by analyzing why they arrive in groups, and better characterizing the attributes of the group. Finally,
the authors clearly demonstrate that packet arrival times are not Poisson distributed, which led to a model
that departs from variations on the Poisson theme.

The packet train model is characterized by the following parameters and their associated probability
distributions:

mean inter-train arrival time
mean inter-car arrival time
mean truck size (in the tandem trailer model)
mean train size.

The train model is designed for analyzing and categorizing real traffic, not for generating synthetic loads for
simulation. Thus, little claim has been made about the feasibility of packet trains for generating synthetic
traffic. Given accurate parameters and distributions, generation should be straight-forward, but derivation of
these parameters is not addressed.

Unlike most models, the packet train model does not exceed the limits of the system. The authors
demonstrate concretely that different types of traffic have different characteristics, largely differing by
protocol. This rigorous mapping of real traffic into the model is unusual and admirable. They do not attempt
to make sweeping statements about all protocols, even in the aggregate. They also do not attempt to present
distributions for the parameters of the model.

Unfortunately, this makes mathematical analysis of a system difficult using the packet train model. Much
more work would be necessary before this model could be used in practical application evaluation. At best,
this provides a roadmap and a framework for detailed analysis. For example, a new protocol designer may be
unable to determine some of the parameters of the packet train model of the new protocol without a prototype
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of the protocol.

Finally, the packet train model is extremely detailed — so detailed that analysis of systems may be
prohibitively difficult. For example, a designer of a switch wants to know the amount of buffer space
necessary to reduce congestive losses to an acceptable level. However, a complete characterization of all
traffic that must be supported would be needed before the analysis could be undertaken.

Back to Table of Contents

3. The Advent of Self-Similarity

Unfortunately, all of the previous traffic models suffer from the same problem: a lack of large time-scale
analysis. The intuition for this is based on the idea that as we aggregate more and more traffic, the results will
smooth to a single mean. This proves not to be the case.

In the early 1990s, a group at Bellcore tracked enough data to allow this analysis. The results clearly showed
evidence of self-similarity in real Ethernet traffic. [Leland94] Subsequent studies by other groups confirmed
the discovery in a wide range of network traffic. All previous models were shown to be invalid or
incomplete.

In this section, we will first explain self-similarity, then discuss the evidence for self-similarity in network
traffic, followed by the impact on Poisson models. Next, we will examine the impact of network dynamics on
self-similarity, and finally a discussion of the conditions necessary for self-similarity to apply.

3.1. Self-Similarity

Self-Similarity refers to distributions that exhibit the same characteristics at all scales. For example, a
self-similar network trace would look the same aggregated in 10 ms bins as aggregated in 10 second bins.

This is clearly not the case for Poisson traffic. As bin sizes increase, Poisson traffic will “smooth,” eventually
reaching a flat line at the distribution mean. Truly self-similar traffic will not; it will continue to show bursts
at all scales. To quote the discoverers of self-similarity in network traffic, “traffic ‘spikes’ ride on
longer-term ‘ripples,’ that in turn ride on still longer-term ‘swells.’” [Will00]

3.2. Evidence of Self-Similarity

In 1993, a group at Bellcore [Will00] recorded a large series of highly detailed Ethernet data. By chance, a
mathematician specializing in self-similarity was available, and a complete analysis demonstrated the
phenomenon beyond any reasonable doubt.

The proof is best illustrated graphically. The original study provided the best available graphical
demonstration of the problem, reproduced here as Figure 1. On the left, we have a real network trace
appearing at different time scales. On the right, we have a pure Poisson process generating synthetic traffic at
the same time scales. The packet counts are renormalized to an appropriate scale as the time scale changes.
The difference is clearest at the largest time scales. 
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Figure 1. Graphical demonstration of Self Similarity vs. Poisson model. From [Leland94];
reprinted with permission of authors.*

Both Poisson processes and self-similar processes are bursty at the correct time scales. However, unlike
Poisson processes, self-similar process bursts have no natural length. Bursts are evident from the 10 ms scale
all the way to the 100 second scale.

3.3. Mathematical Definition of Self-Similarity

Mathematically, self-similar processes are described by the Hurst Parameter, a measure of self-similarity 
0≤H≤1. Then we can define self-similarity in rigorous mathematical terms as follows [Park99].

First, the Hurst Parameter denotes the degree of self-similarity. By definition, for a self-similar process X(t), 
both X(t) and  follow the same distribution for all positive a and t. That is, after scaling the 

distribution in time (and then normalizing), the distribution is unchanged.

We are interested in a subclass of self-similar processes where the autocovariance function γ of X is invariant 
under translation. That is, γ(t,s)=γ(t+k,s+k). Because of this property, γ(t,s)=γ(t-s,0), and it is convenient to
denote the autocovariance function with a single parameter, γ(k).

Next, let us denote the aggregation process  of X as .

Informally, this is equivalent to widening the bins in a binning approach to measurement, decreasing the
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number of bins to m. Then we can extend the autocovariance function γ of X to  as .

A process is exactly second-order self-similar if for 

 for all k≥1

A process is asymptotically second-order self-similar if

 for all k≥1

We are most interested in the asymptotic cases. Informally, this implies that the autocovariance decreases
slowly (or not at all, for exactly second-order self-similar processes) with increasing bin size. Thus,
subsequent values at large scales retain some dependence on prior values even as the scale continues to
increase.

Finally, we can define the autocorrelation function as . Then for 0<H<1

and for ½<H<1

Informally, the autocorrelation decays so slowly with aggregation that no amount of aggregation can
eliminate the autocorrelation within the process. This is the definition of Long-Range Dependence (LRD).

For 0<H<½, the autocorrelation decays sufficiently quickly with aggregation that we can eliminate the
autocorrelation within the process. This is Short-Range Dependence (SRD) and presents far fewer analytical
problems.

3.4. Failure of Poisson Modeling

Poisson-based models do not adequately model self-similar processes, either in modeling traffic for analysis
or in generating traffic for simulations. This can be demonstrated by theoretical arguments and experimental
data.

3.4.1. Problems with Poisson Modeling

Most Poisson models rely on the Central Limit Theorem for measurement of parameters. The Central Limit
Theorem loosely states that as we aggregate more and more data from a distribution or distributions, the
sample distribution will approach a normal distribution, and the mean will “smooth” toward a value. This
allows easy measurement of parameters from inherently non-normal distributions.

Intuition implies that if the interval of aggregation is increased sufficiently, data correlations will eventually
become insignificant by scaling. Unfortunately, the Central Limit Theorem only applies if data is
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independent and has finite variance. As we have already seen, self-similar traffic exhibits LRD characteristics
which cannot be eliminated by aggregation.

Since all of the preceding models except for packet trains explicitly rely on Poisson processes, none of them
can model real network traffic with complete validity. The MMPP model can get arbitrarily close by
increasing the number of states. Indeed, a MMPP model with infinite states can model a self-similar process
precisely.

Since the packet train model makes no assumptions about the distributions of inter-arrival times for cars or
trains, there is no reason why this model could not adequately model self-similar network traffic. This is in
contrast to assertions in [Leland94], which incorrectly assumes that packet trains only use Poisson processes.
Unfortunately, no effort has been made to determine correct distributions and parameters for various types of
trains.

3.4.2. Experimental Invalidation of Poisson Modeling

Shortly after the realization of self-similarity in network traffic, a study [Paxson95] was published 
demonstrating the practical results of applying Poisson models to self-similar traffic. This study demonstrated
a drastic underestimation of the burstiness of TCP traffic over multiple time scales. It also showed that while
connection inter-arrival time of user-initiated connections could be adequately modeled with Poisson
processes, packet inter-arrivals could not. (Machine-initiated connections are normally timer-driven and are
not Poisson.)

An attempt was made to match inter-arrival times for TELNET traffic to exponential distributions. The match
of geometric means was accurate only in inter-arrival ranges of 200-400 μs. Outside this range, the model
made gross errors. For example, 15% of real inter-arrival times were over 1 second; the model predicted 2%.
Matching with arithmetic mean was even worse; for the same data, this model predicted over 70% of
inter-arrival times would exceed 1 second.

A Pareto distribution (probability density function ) of inter-arrival times with β≈1 generates

a very similar distribution to the real network traffic. The Pareto distribution is not self-similar, but it does
exhibit visual self-similarity due to heavy tails and does violate the Central Limit Theorem due to infinite
variance when β≤2. This may be a promising approach. Pareto models are simpler than truly self-similar
models, and while they do not match perfectly over very long periods, over short periods they adequately
represent self-similar traffic.

[Paxson95] also presents a view of the possible consequences of continuing to apply Poisson processes.
Imagine an admission control system that only allows a connection to be established if adequate bandwidth is
predicted. If this system relied on “recent” traffic measurements, the admission could be in error. A
heavy-tailed Pareto model or self-similar model would recognize the possibility of heavy traffic after a period
of low traffic.

3.5. Impact of TCP

The first network traffic models were evolved before TCP congestion control was deployed. Congestion
control changes the situation dramatically. Flows are no longer fully independent, as they all react to the
same triggers (network congestion).

The impact of network dynamics on self-similar processes can cause noticeable changes in the resultant
models. Most traffic models, self-similar and otherwise, are open loop; that is, there is no feedback from the
network to the model. TCP congestion control challenges this assumption.
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The definition of self-similarity is asymptotic. Thus, while it applies over large time scales, small-scale
correlations may be very different. This proves to be the case, and it is in the small scale that the impact of
TCP can be seen [Erramilli02].

The study concludes that self-similarity and TCP congestion control co-exist. That is, TCP congestion control
does not cause self-similarity in the network; neither does it remove or mitigate self-similarity.

3.6. Conditions for Selecting Self-Similar Models

Self-similar traffic models are not always appropriate. Self-similar models are most appropriate when the
following conditions hold [Erramilli02]:

There should be large-scale aggregation of network traffic, otherwise marginal distributions of counts
will not be Gaussian.

1.

The long-range dependency should impact the scaling region under investigation. For extremely short
samples, even the old Poisson models are perfectly accurate.

2.

Network controls should not significantly impact the self-similar flows over the scaling region under
investigation.

3.

Even when these conditions fail us, self-similar models are not usually incorrect. They are merely overkill.
Even in those cases where LRD does not exist, the model is still correct. The parameters are merely selected
to yield minimal dependence (H<½).

Back to Table of Contents

4. Self-Similar Traffic Models

One of the earliest objections to self-similar traffic models was the difficulty in mathematical analysis.
Existing self-similar models could not be used in conventional queuing models. This limitation was rapidly
overturned and workable models were constructed.

Once basic self-similar models became feasible, the traffic modeling community settled into the “detail”
concerns. TCP’s congestion control algorithm complicated the matter of modeling traffic, so solutions needed
to be created. Parameter estimation of self-similar models was always difficult, and recent research addresses
ways to model network traffic without fully understanding it.

This section covers these topics in order. First, we deal with the classical self-similar model, fractional
Brownian motion (fBm). Next, we move to chaotic maps in an attempt to deal with the impact of TCP
congestion control. Finally, we examine one of the newest systems, SWING, designed to analyze and imitate
arbitrary network traffic without understanding the underlying distributions.

4.1. Fractional Brownian Motion

When self-similar traffic models were first introduced, there were no efficient, analytically tractable
processes to generate the models. Ilkka Norros devised a stochastic process for a storage model with
self-similar input and constant bit-rate output [Norros94]. While this initial model was continuous rather than
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discrete, the model was effective, simple, and attractive.

Before discussing Norros’ stochastic process, we first define the normalized fractional Brownian motion
(fBm). A fBm is a continuous-time Gaussian process defined for all positive time values, with mean centered
at 0, and autocorrelation defined on the Hurst Parameter (H) as:

Mathematically, Norros’ process is represented as follows:

where A(t) is the process:

and Z(t) is a normalized fBm with Hurst Parameter in (½,1]. The process parameters are m, the mean input 
rate; a, the variance coefficient; H, the Hurst Parameter; and C, the service rate.

Norros demonstrated analytical solutions to a number of previously difficult problems. He calculated
analytical solutions to the resulting model for superpositions of fBm models and of time-scaled fBm models.
He even calculated an analytical solution of the capacity planning problem, “how much space should be
allocated to reach a given quality of service?” Finally, he validated this solution by re-verifying the old
intuition that for connectionless traffic, enlarging buffers will not increase utilization significantly.

One topic not addressed is the difficulty of determining appropriate Hurst Parameters for a self-similar flow.
This problem proves to be fairly difficult in practice, and significantly limits the application of Norros’ work.

4.2. Chaotic Maps

The impact of network dynamics on self-similar traffic models is addressed in [Erramilli02]. The authors
note that TCP congestion control seems to impact self-similar processes only in the small scale — a scale of
RTTs at most. However, within that scale, the impact is severe.

To correct this, the authors propose a Chaotic Map model of TCP feedback. Chaotic maps can be thought of
as a form of continuous-state Markov chains. A state variable, x, is defined by a function

where x is in [0,1] and d marks a state boundary. For purposes of modeling ON/OFF network traffic sources,
the authors suggestion that when x is higher than d, the source is ON; when x is below d, the source is OFF.

To apply chaotic maps to TCP feedback mechanisms, we use a pair of chaotic maps, one for the window size
and one for the ON/OFF state. We also assume that each iteration is one RTT (and thus every modeled TCP
session has the same RTT). We also establish session length by the starting point in the ON state, and when
in the ON state, the source sends the entire avilable TCP window. All other pieces proceed logically from
here.

From these assumptions, a set of tightly coupled functions can be written describing the evolution of TCP
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windows and source ON/OFF states. This limited model does not handle retransmission of lost packets, nor
the retransmit timeout. The authors speculate that these mechanisms will introduce additional correlations.

In simulation, the chaotic map technique successfully generates distributions that resemble real TCP
distributions. However, the authors do not attempt to validate the results against real network traffic. Despite
being a valuable contribution to the field, chaotic maps could use better validation, especially in a field where
the historical problem has been a poor match between theory and reality.

4.3. SWING

All self-similar traffic models suffer from one significant drawback: estimating the self-similarity parameters
from real network traffic requires huge amounts of data and takes extended computation. The method used in
the original study from [Leland94] takes thousands of observations to converge, since they require analyses
at aggregation levels up to 1000. The most modern method, wavelet multi-resolution analysis [Abry98], is
more efficient, but still very costly.

This is clearly undesirable in a traffic model. In [Vishwanath06], the authors attempt to construct a system
that captures packet interactions, extracts distributions for aspects of the traffic, and then generates realistic
traffic with the same characteristics.

SWING uses a surprisingly simple model for the network traffic analysis and generation. The model
examines characteristics of users, Request-Response Exchanges (RREs), connections, individual packets, and
the overall network. No attempt is made to analyze self-similarity characteristics; any self-similarity in the
generated traffic comes naturally from the aggregation of many ON/OFF sources.

SWING is validated against real traffic by extracting the Hurst Parameter from both the generated trace and
the real traffic. Surprisingly, it performs very well even at sub-RTT timescales. The authors claim to be the
first to produce burstiness across a wide range of time scales. They may well be right. One would still expect
that, mathematically, the generated traffic will not exhibit self-similarity over extremely large time periods;
however, this is a theoretical concern. From a practical standpoint, SWING works exceptionally well.

Back to Table of Contents

5. Conclusions

Having examined existing traffic models from the earliest to the latest, the question must be asked: what
models are used in practice today? Are they still valid? Have theorists finally embraced self-similarity?

First, we look at the models in practical use today in simulation and in practice. Finally, we discuss the
current validity of these models and provide advice to readers of traffic modeling literature.

5.1. Traffic Models Today

NS-2 [NS2] is the most popular network simulator in use today; thus, state of the art in NS-2 should give a
good indicator of the state of the art in use today.
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PackMimeHTTP is a web traffic generator for NS-2, published in 2004 [Cao04]. It does take long-range 
dependencies into account, and uses the Weibull distribution. Thus, it relies on heavy tails to emulate true
self-similarity. Over most time scales, the effort is a success; only an unusually long-running simulation
would allow a distinction to be drawn. This follows suggestions from [Floyd01] where it is suggested that
self-similar processes can be represented as a superposition of many sources each individually modeled with
a heavy-tailed distribution.

This is just one traffic generator, but it is clear that self-similar traffic models are definitely in the
mainstream.

However, in queuing literature, we find that Poisson models are still very popular due to the convenient
analytical properties. This is unsurprising, considering how intractable self-similar models can be in
analytical models. Simulations can afford to address such matters numerically and for finite lengths of time
instead of seeking steady-state solutions.

5.2. Summary and Conclusions

We have reviewed a series of traffic models from the earliest inception to today’s most advanced models.
Early models assumed that network traffic followed a memoryless model, and ignored the possibility of
long-range dependency or self-similarity.

With proper data available for analysis, the models finally broke down. Clear, irrefutable evidence of
self-similarity was discovered, and a new cluster of models were created. The impact of TCP on traffic
models has been investigated and addressed. Finally, the hard problem of emulating arbitrary, realistic traffic
has been partially addressed in the most modern model, SWING.

The outlook is generally promising. However, it should be remembered that queuing theory tends to overlook
self-similar processes with long-range dependence because of practical difficulties. As of today, simulations
should prove to be more accurate than analytical models, and preference should be given to simulation-based
analysis over pure modeling. In all cases, validation against experimental measurements is still the only way
to obtain high confidence. Even today’s sophisticated models are clearly still short of the full complexity of
real Internet traffic.
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7. Informational References

These references are present for background information that, while well-established in the field, may not be
universally understood by the reader. The references cited are selected for educational value rather than
authoritativeness.

[Autocovariance]
http://en.wikipedia.org/wiki/Autocovariance

[Central Limit Theorem]
http://en.wikipedia.org/wiki/Central_limit_theorem

[Exponential Distribution]
http://en.wikipedia.org/wiki/Exponential_distribution

[Poisson Distribution]
http://en.wikipedia.org/wiki/Poisson_distribution

[Pareto Distribution]
http://en.wikipedia.org/wiki/Pareto_distribution
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8. List of Acronyms Used

fBm
(normalized) fractional Brownian motion

LRD
Long-Range Dependency

MMPP
Markov-Modulated Poisson Process

RTT
Round-Trip Time

SRD
Short-Range Dependency
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*Note on Figure 1: While author permission for this figure has been obtained, the copyright may belong to
the IEEE. Permission from IEEE to re-use is still pending.
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