
http://www.cse.wustl.edu/~jain/cse567-06/ftp/sw_monitors1/index.html 1 of 19

An Overview of Software Performance Analysis Tools and
Techniques: From GProf to DTrace
Justin Thiel, justin@binaryllama.net

Abstract As computer applications have grown in complexity, the ability to fine-tune the performance of an application
"by-hand" has been reduced. In response to these difficulties, a wide variety of automated performance analysis techniques
have been developed. This paper provides an in-depth look at the types of analysis tools that are currently avaiable, starting
with those that implement simple static techiques and then moving onwards towards those that rely on advanced dynamic
mechanisms to obtain application statistics. Along the way, various example tools are presented in an attempt to give the
reader a better idea of how a real world implementation of each analysis mechanism functions.

Table of Contents

1. Introduction
2. Static Analysis Tools

2.1 Compile Time Instrumentation Tools
2.1.1 Overview of GProf

2.2 Sampling Tools
2.2.1 Overview of Qprof
2.2.2 Overview of Oprofile

2.3 Hardware Counter Tools
2.3.1 Overview of PerfSuite

2.4 Compound Tools
2.4.1 Overview of vTune

2.5 Summary
3. Dynamic Analysis Tools

3.1 Binary Instrumentation Tools
3.1.1 Overview of Pin

3.2 Probing Tools
3.2.1 Overview of DTrace

3.3 Summary
4. Hybrid Analysis Tools

4.1 Overview of HP Caliper
Summary
References
List of Acronyms

1. Introduction

The act of optimizing a software application to run as fast as possible on a given computing platform has never been a trivial
task. In the past, developers achieved such goals by poring over hardware and software manuals, trying to locate the proper
combination of assembly language instructions that would result in the level of performance that they desired. Since the
computers they had available were all well documented and functioned in a wholly deterministic manner, it was relatively easy
for a developer to determine the types of source-code adjustments that would work best on a given architecture.

In the past ten years, however, the software development landscape has evolved dramatically as the general public has
embraced computing devices of all types and become increasingly reliant on them to accomplish everyday tasks. As the
demand for more sophisticated applications has increased, designers have turned to use the use of higher-level languages and
frameworks in an attempt to reduce development costs and remain competitive in the marketplace. As a result, applications
have grown increasingly complex in terms of both code size and the interactions that occur within them [Cantrill04].
Therefore, while this "layered" approach to development may save time and money in the short run, it complicates the task of
determining whether an observed performance issue is internal to an application or caused by the frameworks that it is built

http://www.cse.wustl.edu/~jain/cse567-06/ftp/sw_monitors1/index.html 2 of 19

upon.

Beyond this, computer hardware itself has been forced to change dramatically to keep up with the unrelenting demand for
more computing power. The simple single-issue processors of the past have given way to super-scalar designs capable of
executing multiple instructions in a single cycle while simultaneously reordering operations to maximize overall performance.
As a result, the instructions passed into the processor have become merely a guideline for execution, as opposed to the written
rules they were viewed as in the past. Since a developer now has no way to determine precisely how the processor will operate,
the act of hand-tuning an application at the assembly level is no longer a straightforward task [Cantrill04].

As early as the 1980s, researchers were aware of these trends in computing and began developing tools to automate the task of
performance analysis. These initial tools, much like the computers of the time, were simple in nature and capable of gathering
only rudimentary performance statistics [Graham82]. Furthermore, due to technical limitations, these early tools focused
exclusively on quantifying application-level performance, and were unable to characterize the effects of items such as library
code or the operating system itself. As computers became more complex, however, advanced tools were developed to cut
through the layers of abstraction caused by the use of advanced operating systems and other development frameworks to gain
meaningful performance statistics for the entire software system [Cantrill04, Hundt00, Luk05]. More recently, hardware
designers have begun to embed counters in the CPU that can record cache hit statistics and other meaningful information, thus
allowing developers to obtain a complete performance profile for their applications [Noordergraaf02, Anderson97, Kufrin05b].

In the remainder of this paper, the various types of performance analysis tools currently available to developers will be
examined in-depth with particular attention paid to real-world implementations. Static tools, which make use of counting
and/or sampling methods to obtain rudimentary statistics, are treated first [Graham82, Anderson97]. This is followed by an
overview of dynamic tools, which utilize binary instrumentation and probing to provide better insight into application
performance [Cantrill04, Luk05]. Finally, information on hybrid tools that combine both static and dynamic analysis
techniques is provided along with a set of closing remarks.

Back to Table of Contents

2. Static Analysis Tools

The phrase 'static analysis tool' is typically used to classify any performance evaluation mechanism that makes use of
non-binary modifications to obtain application statistics. In other words, static analysis tools never modify the binary image of
an application, and instead rely on techniques such as source code instrumentation or sampling to obtain their results
[Anderson97]. Once recorded in either main memory or on disk, said results can be analyzed to determine any performance
bottlenecks that may exist in a program.

The type of information that can be obtained from any specific static analysis tool is largely a function of the type of
evaluation techniques that are employed. Typically, a static analysis tool will focus on a few areas of analysis in order to
provide meaningful results that would be impossible or impractical to obtain by hand. For instance, source code
instrumentation tools such as gprof can provide rudimentary timing data about the various functions defined within an
application, while highly advanced sampling tools such as qprof can provide detailed statistical reports about shared library
usage and kernel-level interactions [Graham82, HP06]. While such data can certainly simplify the task of tracking down
performance analysis problems, other issues inherent to these types of tools prevent their use in certain situations.

By virtue of the fact that static analysis tools are incapable of modifying a running program, any statistical data that a
developer wishes to collect must be specified prior to when the application is ran [Srivastava94]. Furthermore, most static
analysis tools report results asynchronously, meaning that if a performance issue arises halfway through the instrumented run
of an application the developer will not be notified of said issue until after the entire run has completed. As a result, any
performance issues that require real-time feedback to diagnose cannot typically be detected by these types of tools.

Beyond this, the use of static analysis tools can cause a number of unintended side effects by virtue of the fact that they require
either the insertion of dedicated data collection routines into a set of code or the use of external sampling routines. Such code
typically causes system slowdown due to the overhead of gathering statistics, and thus can have dramatic effects upon
application performance. Furthermore, this external code can potentially change the behavior of a running program by
introducing performance issues that did not exist prior to analysis or falsely alleviating those that previously existed in the
program [Anderson97]. Despite these issues and those listed above, however, these types of tools have become invaluable in
the real world due to the useful statistics that they can gather.

In the remainder of this section, detailed descriptions of each of the major subtypes of static analysis tools are provided,

http://www.cse.wustl.edu/~jain/cse567-06/ftp/sw_monitors1/index.html 3 of 19

starting with the earliest compile-time instrumentation tools and proceeding onward towards modern sampling and compound
tools. Along the way, specific implementations of each subtype are discussed in an effort to demonstrate the effectiveness of
each static analysis technique in the real world. This is followed by a brief summary meant to assist the reader in determining
the types of static analysis tools that might aid them in their own development endeavors.

2.1 Compile-time Instrumentation Tools

Compile-time instrumentation tools (CITs) were first developed during the early 1980's and, as such, are generally regarded as
the oldest class of static analysis techniques. Due to their relatively old age, these tools have been largely outclassed by more
advanced techniques as the field of performance analysis has evolved. Many developers, however, are familiar with the inner
workings of how these tools operate, and thus are unwilling to give them up in favor of what they view to be "unproven"
solutions. As a result, CITs still experience widespread usage by developers all around the world [Nikiosha96].

To begin analyzing an application, a CIT first requires access to its entire source repository. This collection of source files is
then passed through a specialized compiler that is capable of instrumenting the application as its binary representation is
constructed. Typically, this instrumentation consists of a set of counters or monitor function calls that are integrated into the
existing function call structure [Graham82, IBM06]. When an instrumented binary is executed, the inserted statements are
triggered as function calls are made within the application so that statistical data can be recorded and then analyzed at a later
time. The instrumentation method used by a particular tool will have a direct effect upon the types of data that can be obtained.
For instance, merely collecting the number of times a function is called via a counter is not sufficient enough to generate a call
graph for the entire application [Graham82]. Figure 1 provides a visual explanation of how a typical CIT functions.

Figure 1: Operational Description of a Typical CIT

Since this instrumentation is done exclusively at the source-code level, performance data for any external libraries or external
frameworks that an application utilizes can only be obtained if their source code or a pre-augmented variant is available
[Graham82]. In cases where such code is not readily accessible, accurate performance statistics cannot be obtained at all levels
of software interaction. As modern large-scale applications have become increasingly reliant upon closed-source dynamic
libraries to implement selected portions of their functionality this inherent limitation has emerged as the fatal flaw of all CITs.
As a result, these types of tools have become largely relegated for use only with simple programs where a minimum amount of
external code is required.

In the increasingly rare cases where the use of CITs is appropriate, however, such tools are capable of generating an
impressive array of statistics including accurate function call counts and hierarchal call graphs [Graham82, IBM06]. By
analyzing the output of these tools, developers can precisely determine the flow of control through their applications and see
what sets of functions are called the most. Once identified, these critical functions can be optimized, thus significantly
reducing the overall execution time of the application. To better explain how this process works a description of gprof, the
canonical example of a CIT, is provided below.

2.1.1 Overview of Gprof

Gprof is a cross-platform performance analysis tool that is capable of serving both as a CIT and a sampling tool (see Section
2.2). For the purposes of this description we focus on gprof's abilities as a CIT as its role as a sampling tool has been largely

http://www.cse.wustl.edu/~jain/cse567-06/ftp/sw_monitors1/index.html 4 of 19

outclassed by more robust alternatives in the over twenty years that have passed since its initial release [Nikiosha96]. As a
sampling tool, however, it is still capable of collecting a wide array of useful function-level performance statistics from a
targeted application.

To perform a compile-time analysis, gprof relies on two components: an augmenting compiler and a data analysis wrapper.
The augmenting compiler is used to insert a monitoring function into a targeted application at the source level along with a set
of calls to the monitor that are injected prior to each function call in the program. The resulting instrumented binary is then
executed via the wrapper, causing raw performance data to be collected each time a function call is triggered. This data is then
analyzed after the program terminates and presented to the end-user in an easy to parse format [Graham82].

By handling all data analysis post-execution, gprof attempts to minimize the performance overhead associated with analysis.
Unfortunately, this optimization has a minimal effect at best due to the fact that every function call in the targeted application
must be instrumented to generate meaningful results. Since each instrumented function call incurs a slight performance
penalty, the cost of performing an analysis scales along with the number of functions in an application and can quickly become
significant enough to slow execution time dramatically [Graham82].

The statistical data collected by gprof is at the function level and primarily consists of call counts, call graphs, and other
related information. Such results can be used to reconstruct the internal structure of an application and identify where
performance bottlenecks might exist. For instance, if a single function has a relatively high call count compared to others in the
application, optimizing it would likely result in a significant impact on performance. By virtue of the fact that gprof is a CIT,
however, the statistical information collected from associated external library and/or kernel-level functions is minimal at best
thus clouding any results [Graham82].

Despite its flaws, when gprof was first introduced in 1982 it revolutionized the performance analysis field and quickly became
the tool of choice for developers around the world. Although newer tools have long since eclipsed it in terms of functionality
and accuracy, the tool still maintains a large following because many developers are simply unwilling to switch to other tools.
As a result, the tool is still actively maintained and remains relevant in the modern world.

2.2 Sampling Tools

Unlike compile-time tools, which require source-level modification to obtain statistics, sampling tools (STs) have no such
restrictions. These tools can therefore be used to analyze a much wider of array of applications, including those that make use
of libraries for which no source code is available [Kufrin05b]. Therefore, they have become fairly popular among developers
and a number of such tools have been developed for almost any type of computing platform imaginable.

Sampling tools operate by wrapping themselves around the execution of an application, taking control of program flow, and
then pausing execution at specific points to record the current state of the system by referencing the program counter (PC) or
some other appropriate mechanism. In this manner, any wide array of statistical data can be obtained including call counts, the
amount of time spent in each function, or an instruction-by-instruction execution profile [Sun01]. If debug symbols are present
in the sampled binary, these results can typically be reported in an easy-to-parse format that is annotated with the proper
function names [HP06]. This information can then be utilized to optimize the application in relation to any number of metrics.
Figure 2 provides a visual description of how a typical ST functions.

http://www.cse.wustl.edu/~jain/cse567-06/ftp/sw_monitors1/index.html 5 of 19

Figure 2: Functional Description of a ST

Since STs rely on timer-based sampling, the results obtained from such a tool are most reliable when samples are taken fairly
often so that no changes in program state are missed [Levon03]. The immediate downside to sampling often is that doing so
causes the execution of an application to slow dramatically, therefore increasing the amount of time it takes to obtain
performance results. This, in turn, creates a constant struggle between execution time and statistical accuracy that is often hard
to balance. To alleviate this issue, partial analysis runs are often run at a variety of sampling rates so that the required accuracy
level can be tuned in.

Since the results obtained from an ST are approximate at best, they should always be taken with a grain of salt. For instance, if
a very small function is executed only twice in an application, the ST may only detect one or none of these calls depending
upon how often samples are taken. Furthermore, if the ST relies on a software-based mechanism to trigger sampling, its
activations can often be delayed due to other interactions in the system, resulting in even less accurate results. To combat this,
many STs utilize platform-specific hardware timers to provide more reliable and higher resolution sampling [Zeichick03].

Even when the most accurate sampling mechanisms are employed, however, the usefulness of any ST is directly tied to how its
monitoring code is implemented. If constructed as a user-level application, the monitor is only capable of seeing interactions at
the application and library levels and thus cannot quantify kernel-level performance issues [HP06]. On the other hand, if the
monitor is embedded in a kernel module, then it can observe interactions at all levels of the software hierarchy [Levon03]. To
better illustrate these differences, overviews of qprof (a user-level ST) and Oprofile (a kernel-based ST) are provided below.

2.2.1 Overview of Qprof

Qprof is an ST that makes use of a user-level sampling mechanism to obtain performance data on Linux-based operating
systems. The tool collects statistics in real-time without the need for binary-level modifications and functions as a shared
library. This method of implementation allows for a higher level of integration with the operating system than is possible with
a wrapper-based approach [HP06].

To instrument an application using qprof, a developer must first configure a number of environment variables that dictate how
long sampling should be done and if events should be recorded at the function, line, or instruction level of granularity. A
special environment variable named LD_PRELOAD must then be pointed at the qprof shared library to activate the tool. Once set,

http://www.cse.wustl.edu/~jain/cse567-06/ftp/sw_monitors1/index.html 6 of 19

the kernel will intercept any application that is executed and inject the qprof library into its memory space before it is allowed
to run. Qprof is then able to take control of the binary and orchestrate the sampling of data from the application [HP06].

To allow for flexibility in analysis, the qprof shared library is constructed in a manner that allows for thread-safe operation.
Furthermore, due to the fact that the LD_PRELOAD environment variable is applied to all processes spawned within a shell, the
tool is able to seamlessly handle applications that spawn multiple processes [HP06]. As a result, complex software that relies
heavily upon parallel operations can be analyzed in the same manner as a simple "Hello World" program.

Results obtained by qprof are reported in a "flat" profile format that lists how much time is spent in a particular function, line,
or instruction and are typically associated with their symbolic names so long as sufficient information is present in the binary
(i.e. debug symbols). Due to its architecture, qprof is only capable of collecting data at the application and library (shared,
dynamic or static) levels of abstraction and cannot resolve references in the kernel [HP06]. The effect of this limitation,
however, is only significant in cases where the kernel is suspected to be the limiting factor in application performance. As
such, user-level tools such as qprof are applicable to a wide-range of performance analysis scenarios.

2.2.2 Overview of Oprofile

Oprofile is a kernel-based ST that can record performance statistics from applications running on the Linux operating system
via a variety of monitoring mechanisms. For the purposes of this description, it is assumed that Oprofile is operating in the
standard "timer" mode whereby system state samples are taken at fixed intervals in manner determined prior to run-time. In
this mode, Oprofile performs quite similarly to qprof with the only major differences resulting from the fact that one resides in
kernel-space while the other is a user-level application [Levon03].

The tool itself is composed of two primary components: a kernel module and a user-level daemon. The kernel module is
loaded into kernel-space at system startup and creates a pseudo character driver (/dev/oprofile) that can be used to both
configure Oprofile and retrieve results from it via the use of somewhat cryptic commands. In contrast, the daemon runs in the
background within user-space and provides software developers with an easy-to-use interface through with the kernel module
can be manipulated [Levon03]. By leveraging the interfaces provided by the daemon, Oprofile can be configured to monitor
program performance in a relatively straightforward manner.

Internally, the kernel module tracks the samples it takes via an absolute program counter stored within the kernel itself. At
pre-specified intervals, these samples are processed in bulk by sending them from the kernel module to the user space daemon.
When this occurs, the absolute program counters that were recorded are referenced to the current set of running and just
completed processes and are each mapped onto specific binaries on the machine. The set of recorded program counters are
then modified such that they become offsets into binary images stored on the disk (i.e. relative program counters) and are
passed to the user-level daemon, at which point the names of their associated functions can be determined [Levon03].

As one might imagine, this intricate data collection mechanism enables Oprofile to provide highly detailed performance
profiles of applications running on a given system. For instance, kernel-level code and modules can be profiled with
instruction-level accuracy and can even be resolved to the name of the function that they are associated with. Furthermore,
kernel-level statistics on modules such as the process scheduler can be recorded and used to analyze system performance
[Levon03].

The downside to having such power, however, is that Oprofile can be somewhat difficult to configure since it requires that a
copy of the source code for the exact kernel of which it will be run be present before a compatible version of the tool can even
be generated [Levon03]. Therefore, kernel-level STs such as Oprofile should really only be used in cases where it is suspected
that low-level code such as the scheduler or a loadable module is the source of a performance flaw, and therefore a simple
user-level ST would be incapable of discovering the problem. In all other cases, such tools are overkill for the task at hand and
simpler to configure tools that can produce results in a shorter amount of time are likely available.

2.3 Hardware Counter Tools

Hardware counting tools (HCTs) take advantage of a recent trend in microprocessor design to include a number of on-chip
programmable event counters [Anderson97, Kufrin05b]. These counters can be used within supporting tools to record detailed
information about the internal state of the processor, thus allowing developers to analyze their applications at the lowest levels
of execution. Since all statistics are gathered exclusively at the hardware level, developers need only supply an application
binary in order to make effective use these types of tools.

In the past, the only types of machines that provided on-chip event timers were either research devices or high-end servers
[Noordergraaf02]. Recently, however, this technology has gone mainstream due to the shrinking size of transistors and the

http://www.cse.wustl.edu/~jain/cse567-06/ftp/sw_monitors1/index.html 7 of 19

resulting abundance of area available on modern processor dies. As a result, now even desktop and workstation processors
such as the Intel Core Duo and AMD Athlon contain the hardware necessary to implement these types of mechanisms. This, in
turn, has led to increased interest in both HCTs and the types of statistics that they are capable of gathering.

Within the processor, event counters are implemented as simple circuits that increment an internal register each time an event
they are programmed to watch for occurs. The events that can be monitored vary from processor to processor but typically
allow the developer to count items such as the types of cache misses that have occurred or the number of floating point
operations that have been executed [Kufrin05a]. The number of counters available on a particular device is strictly limited by
the amount of die space devoted to them, but they can typically be reprogrammed or reset at will to change the types of events
that they respond to.

HCTs exploit the ability to program these counters by providing developers with methods by which they can easily select the
types of events that they wish to monitor. Once configured, the HCT acts as a wrapper around the chosen application, in much
the same way as an ST, and requires that the application be paused at specified intervals to collect performance statistics
[Anderson97]. Unlike STs, however, HCTs can typically provide more accurate results by virtue of the fact that the counters
are automatically handled in the hardware, thus eliminating a significant portion of the guesswork. Small statistical differences
between subsequent analysis runs can exist, however, due to variations in when the timer (either in hardware or software) that
is used to trigger data collection is fired.

To handle cases when there are not enough hardware resources to obtain counts for all of the events that a user would care to
in a single run, HCTs will often include the ability to perform multiple analysis runs using a different subset of events each
time. These results of these runs can then be stitched together to form a single meta-analysis file [Kufrin05a]. In doing so, the
tool can produce a detailed report of resource usage for a given application that can then be used to tune the system until the
minimum possible execution time is achieved. To further illustrate the usefulness of this class of analysis mechanisms a
description of an HCT known as Perfsuite is provided below.

2.3.1 Overview of Perfsuite

Perfsuite is a Linux-based HCT that implements a lightweight API through which the hardware counting mechanisms
embedded within modern microprocessors can be accessed in a generalized manner. Instrumentation commands defined via
this API link into a set of 3rd party kernel modules (perfmon and perfctr) that are then responsible for configuring and
monitoring the counting mechanisms inside a given CPU. Currently, these modules only provide counter access services for
processors that implement the x86, x86-64 and IA-64 architectures. Due to the transparent nature of the API, however, it
should be relatively easy to add support for additional microprocessor types in the future [Kufrin05a, Kufrin05b].

To obtain performance statistics from an application via Perfsuite, a specialized execution wrapper known as psrun must be
utilized. This wrapper allows the tool to configure the kernel modules and sampling mechanisms used in analysis prior to
execution of the program under test. After configuration is completed, the targeted application is then allowed to run freely as
samples of the system state are recorded at pre-defined intervals. When execution completes, the raw data that was collected is
processed into an XML-compatible form and deposited into a file on the local disk [Kufrin05a, Kufrin05b].

Once all of the required analysis runs for a given application have been completed, the data files generated by psrun are
typically passed into a utility known as psprocess in order to be converted into a human-readable form. The types of
performance statistics that psprocess is able to report for a given application will depend a great deal upon the how psrun was
configured prior to the start of execution. In the most general case, however, detailed information about cache hits and misses
(both L1 and L2) and the types of instructions (floating point, vector, etc...) issued within in the system can always be obtained
[Kufrin05a, Kufrin05b]. Said information is useful for tuning applications at a high level or determining the types of processor
resources that are the performance bottlenecks for a given piece of software.

In cases where a more in-depth analysis is needed, psprocess is also capable of generating detailed symbolic performance
profiles that are indexed by a particular hardware counter. As such, the usage of a particular hardware resource can be directly
correlated to specific functions or lines of code within an application. Furthermore, by virtue of the fact that kernel-based
performance monitors are utilized, the tool is capable of collecting such information at all levels of the software hierarchy for
both single and multi-threaded applications [Kufrin05a, Kufrin05b]. This level of flexibility allows developers to gain an
insight into hardware related-issues with a level of accuracy not possible in most other tools.

2.4 Compound Tools

Traditional STs are incapable of profiling an application at all levels of abstraction by virtue of the fact they are unable to
monitor hardware events. Similarly, HCTs are unable to provide detailed software performance statistics since they operate

http://www.cse.wustl.edu/~jain/cse567-06/ftp/sw_monitors1/index.html 8 of 19

exclusively at the hardware level [Anderson97]. As a result, developers in the past were often forced to utilize both types of
applications in they wished to accurately profile their applications at all levels of execution. In response to this, a class of
analysis applications referred to as "compound" tools (CTs) were developed.

At its core, a CT simply combines sampling and hardware event monitoring tasks into a single, well-integrated tool. This
means that the statistical uncertainties associated with results obtained from both traditional STs and HCTs are inherent to
these types of tools as well. Due to the fact that all statistics are collected in parallel, however, the task of stitching together
results from disparate tools is eliminated and results can be presented to the developer in a clear and concise manner [Intel06,
Zeichick03]. This, in turn, simplifies the task of optimizing an application to run efficiently on a given set of hardware and
software components. The overview of Intel's vTune provided below contains an in-depth description of the types of
performance statistics that these types of tools are capable of monitoring.

2.4.1 Overview of vTune

vTune is a cross-platform compound performance analyzer produced by Intel that combines the functionality of both an HCT
and ST into a single tool. In doing so, vTune is able to function as a broad-spectrum performance analyzer suitable for use in a
wide array of statistics gathering tasks on both x86 and IA-64 machines. Since data obtained from the tool can be used to
quantify effects at both the software and hardware level, the need for additional monitoring mechanisms can often be
eliminated, thus reducing the time required to perform an analysis [Intel06].

The ST implemented by vTune operates at the user layer, supporting analysis at multiple levels of granularity (function,
instruction, or source-code) while also allowing the end-user to determine the rate at which samples should be recorded. The
tool is able to differentiate the effects of library functions from that of application code, but is incapable of profiling at the
kernel-level due to its internal structure. As a result, software-related performance issues can only be pinpointed if their root
cause does not lie in the kernel itself [Intel06].

To aid in hardware-level analysis, vTune provides an advanced HCT that is capable of monitoring a number of low-level
events that most other mechanisms cannot. For example, the number of "replays" that a particular function or instruction
undergoes during execution can be recorded by the tool. Stated briefly, a replay occurs as a result of special-case cache misses
within the Pentium IV and requires that the set of instructions affected by the condition be re-issued to correct the mistake.
With knowledge of how often this occurs, a developer can tune their application to reduce the chance of replays, thus
improving performance [Intel06].

From a compatibility standpoint, vTune is clearly optimized for use with Intel's own processors. This favoritism is most clearly
demonstrated by the fact that while vTune's HCT is capable of obtaining even the most obtuse hardware-level performance
statistics from Intel's own processors, the functionality is wholly incompatible with non-Intel devices. When an application is
being tuned to run exclusively on Intel hardware, however, vTune provides a well-integrated suite of performance analysis
tools that are ideal for use in handling any static analysis tasks that a developer might encounter [Intel06].

2.5 Summary

The capabilities that a specific static performance evaluation tool can provide vary widely depending upon the types of
analysis techniques that it implements. It is therefore difficult to describe how a "typical" static analysis tool operates. To
remedy this, a set of four classifications based upon the basic types of static analysis techniques has been developed. Using this
system, each static tool can be grouped into one these classifications and the features and shortcomings that a particular tool
provides can be discussed in a generalized format. A comparison constructed in this manner is provided below in Table 1.

Subtype Features Shortcomings Example Tools

http://www.cse.wustl.edu/~jain/cse567-06/ftp/sw_monitors1/index.html 9 of 19

Compile-time
Instrumentation
Tools (CITs)

Instruments applications at the
source-code level.

1.

Can gather call counts for each
function in an application.

2.

Can generate call graphs to
show flow of control through an
application.

3.

Obtains data in a precise
manner; does not rely on
statisical methods.

4.

Typically cannot gather statistics
at the library or kernel level.

1.

Requires that an application's
entire source tree be available to
instrument properly.

2. Gprof1.
Prof2.

Sampling Tools
(STs)

Instruments applications via
statistical sampling.

1.

Can gather call counts for each
function in an application.

2.

Can determine how much time
was spent in each portion of an
application.

3.

Many implementations are able
to obtain statistics at both the
library and kernel level.

4.

All data obtained is approximate
at best due to sampling methods
employed.

1.

Typically cannot generate call
graphs.

2.

Can require the presence of
specialized timing hardware to
obtain reliable results.

3.

Qprof1.
Oprofile2.
Prospect3.

Hardware Counter
Tools (HCTs)

Instruments applications via
statistical sampling.

1.

Can make use of hardware
counters embedded in modern
microprocessors to characterize
applications via their hardware
usage.

2.

Many implementations can
characterize hardware usage at
both the library and kernel
level.

3.

All data obtained is approximate
at best due to sampling methods
employed.

1.

Number of hardware counters
available limit the types of
statistics that can be obtained in a
single instrumented run.

2.

Requires the presence of
specialized hardware that may
not be available on all platforms.

3.

Perfsuite1.
DCPI2.
Sunfire
Link

3.

Perfmon4.
Statsmod5.

Compound Tools
(CTs)

Combine one or more static
analysis techniques into a single
tool.

1.

Can provide developers with a
multi-facted view of their
application.

2.

Provides inherent benefits of
each technique they implement.

3.

Run the risk of being a
"jack-of-all-trades", but a master
of none.

1.

Can be more complex to operate
than their single-use
counterparts.

2.

Intel
vTune

1.

AMD
Code
Analyzer

2.

Table 1: Comparison of Static Analysis Tools [Intel06, Zeichick03, IBM06, Anderson97, Kufrin05b, Graham82,
Noordergraaf02, Hough06].

As can be seen in the table, each type of static analysis tool has its own unique set of features and shortcomings. Despite this,
each classification of tool shares the quality that it functions in a static manner, meaning that no modification of an
applications' binary image is performed when it is analyzed [Graham82]. As a result, these tools are typically only capable of
generalized analysis and not ideal for use in cases where highly detailed performance statistics need to be gathered. In the vast
majority of situations, however, a static tool exists that is capable of pinpointing any type of performance issue a developers
encounters, provided that it is not buried under multiple layers of abstraction.

Back to Table of Contents

http://www.cse.wustl.edu/~jain/cse567-06/ftp/sw_monitors1/index.html 10 of 19

3. Dynamic Analysis Tools

Whereas static analysis tools view the binary image of a program as a "black-box" that must never be modified, dynamic
analysis tools instead rely on binary-level alterations to facilitate the gathering of statistical data from an application
[Srivastava94]. Such alterations are typically inserted while the application is running so that highly accurate statistics can be
gathered in real-time [Luk05]. This, in turn, enables dynamic analysis tools to provide insights into program performance that
would not be possible to obtain via static examination techniques.

The types of analysis techniques that dynamic tools typically employ can be classified into one of two groups: binary
instrumentation or probing. Broadly speaking, tools that make use of binary instrumentation are capable of injecting
customized analysis routines into arbitrary locations within an application binary to record a wide array of performance data
[Srivastava94, Luk05]. Probing tools, on the other hand, rely on support routines embedded in shared libraries and the kernel
that can be activated on-the-fly to obtain detailed information about a component's internal status, thus facilitating analysis at
multiple levels of abstraction [Cantrill04]. By making use of the information provided by either analysis technique, developers
can profile their applications with high granularity, thus simplifying the task of performance tuning. As is the case with static
analysis tools, however, such flexibility in analysis does not come without compromises.

The tradeoffs a developer must accept to make use of dynamic analysis techniques primarily result from the methods that such
tools employ to obtain performance statistics. More precisely, by relying on the use of binary-level modifications, these tools
effectively modify the structure of the applications that they profile. As a result, programs tend to run somewhat slower while
being analyzed due to the increased overhead caused by the insertion or activation of performance monitoring routines.
Beyond this, the "random" insertion of code into a binary can affect the flow of instructions through a processor pipeline, thus
modifying the performance characteristics of the application [Luk05]. As a result, it is generally recommended that developers
only instrument code segments that they believe to be probable sources of performance issues so that the effect upon the rest of
the application is minimized.

Despite these shortcomings, efforts devoted towards the research and development of dynamic analysis tools have increased at
a steady rate. This is likely a side effect of the increased use of high-level languages and software frameworks by developers in
an attempt to develop applications at a rapid pace. Such mechanisms often result in the creation of convoluted software with
multiple levels of functional abstraction, making it difficult to pinpoint performance issues using traditional static analysis
tools. The detailed overviews of binary instrumentation and probing tools provided in the remainder of this section serve to
further illustrate why dynamic analysis techniques are ideal for use in profiling modern applications.

3.1 Binary Instrumentation Tools

For the purposes of this discussion, we focus exclusively on tools that rely on real time instrumentation. As a result, tools such
as ATOM that rely on off-line binary instrumentation are largely ignored, although many of the concepts provided here apply
to them as well [Srivastava94]. These tools are disregarded primarily because they have largely been outclassed by their
"dynamic" counterparts and are thus no longer widely used within the development community [Luk05].

Binary instrumentation tools (BITs) rely on binary modification techniques to obtain performance statistics for the applications
they analyze. More specifically, these tools are able to inject analysis routines into an application while it is executing in order
to record information about its internal structures. The results of this analysis can then be examined to determine where
performance bottlenecks exist within a program [Luk05, Zhao06].

Prior to analyzing a given application, a BIT must first gain access to its instruction stream. Typically, this is done by linking
the tool into a set of hooks provided by the host operating system that allow one application to modify the memory space of
another. Once inside an application's memory space, the BIT can then inject analysis routines into the program and setup a
structure (via signals or a similar method) that will allow the tool to maintain control once execution is resumed. The
application is then allowed to proceed as normal from the point at which it was interrupted, processing any inserted routines
that it happens to come across [Luk05, Zhao06, Kumar05]. Figure 3 provides a visual description of this process.

http://www.cse.wustl.edu/~jain/cse567-06/ftp/sw_monitors1/index.html 11 of 19

Figure 3: Operational Description of a Typical BIT

Typically, a BIT is not distributed with a large library of analysis routines and instead relies on the developer to hand-code the
functionality they require. To facilitate this task, a tool-specific API is provided that dictates what types of events can and
cannot be monitored within the system. By coding to the specifications of such an API, developers can then slowly build up
their own collection of analysis routines from the ground up or simply enhance those that are already available [Luk05]. Since
these APIs are tool-specific, however, it usually not possible for a developer to transition from one BIT to another without
having to re-write their entire set of analysis routines.

In exchange for abiding by the constraints of these proprietary frameworks, BITs are able to provide developers with advanced
functionality not typically seen in other types of tools. For instance, many BITs include support for selectively modifying the
set of analysis routines that are associated with an application at any point during its execution. This is done via the access
method setup when the BIT initially takes control of the program [Luk05]. By taking advantage of this feature, applications
under test can be made to run at full-speed when statistics gathering is not required, and then instrumented "on-the-fly" when
performance issues arise during execution. This, in turn, minimizes the performance impact typically associated with
application profiling and potentially allows statistics to be gathered in a timelier manner.

Beyond this, BITs also provide the ability to instrument applications at multiple levels of the software hierarchy, thus
increasing the breadth of performance statistics that can be obtained from a given program. Such functionality is made possible
by virtue of the fact that library functions are typically loaded into the same memory space as the instrumented application at
startup time, and therefore appear as just another segment of code within the binary image. Unfortunately, this ability does not
extend to kernel-level code because it resides in an isolated memory space [Luk05, Kumar05, Zhao06].

Despite their advantages, the use of BITs is not quite commonplace in the world of software development. This is likely due to
certain misconceptions about how these tools operate and what effects they have upon application performance. There are,
however, a number of research-oriented tools available that implement a variety of binary instrumentation methods. A
description of a binary tool known as Pin is provided below to give the reader a better idea of how binary instrumentation is
done within a real system.

3.1.1 Overview of Pin

Pin provides a Linux-based software development framework through which portable dynamic instrumentation routines can be
defined. Once created, these routines can be compiled into an x86, x86-64, or IA-64 binary format and then injected into an

http://www.cse.wustl.edu/~jain/cse567-06/ftp/sw_monitors1/index.html 12 of 19

application at runtime to gather performance statistics [Luk05]. In this manner, applications can be profiled on multiple
platforms via a single set of instrumentation routines, thus reducing development costs and speeding up the analysis process.

To facilitate the creation of instrumentation routines, Pin implements a C-based development API. Through the use of this
API, developers can define precisely where instrumented code should be injected into an application binary to collect
performance statistics. Multiple granularities of instrumentation are supported, allowing code to be inserted before or after
function calls, specific instructions, or the occurrence of specific blocks of code [Luk05]. This, in turn, allows developers to
pinpoint performance issues within an application to their precise origins.

Instrumentation routines defined by developers can be injected into a targeted application at runtime to gather statistics. To
facilitate this injection process, Pin relies on the Ptrace debug interface provided by the Linux operating system. Through this
interface, the tool is able to gain control of any application that is executing on the system and inject the Pin executable into its
address space. Once injected, Pin is able to take control of the application and begin inserting instrumentation routines to
gather analysis data [Luk05].

In a typical program, the various jump and branch instructions present in the source code are relative, meaning, that if any
additional instructions (such as instrumentation routines) are inserted into the binary the targets of these instructions will no
longer resolve correctly. To address this issue, Pin performs just-in-time (JIT) compilation of all application code into an
internal format and executes programs within a virtual machine (VM). By making use of a VM, the tool is able to redirect
jumps and branches to their proper destinations, as well as insert instrumentation routines into the code stream without
affecting other calculations within the code. Furthermore, the use of a VM allows Pin to provide a degree of portability in
analysis due to the fact that the only machine-specific component of the tool is the code generator that is used to convert
instructions from the VMs internal format to the native format used by a given architecture. By leveraging this functionality,
Pin is currently able to provide support for the x86, x86-64, and IA-64 architectures, and is expected to add support for the
ARM platform in the near future [Luk05].

The downside of the VM-based execution mechanism that Pin employs is that the overhead of instrumentation can become
quite high. This is due to the fact that code is no longer directly executed on the system; instead it is interpreted, modified,
re-compiled, and then converted into a native format for execution. To handle this issue, Pin provides a set of code
optimization routines that operate at both the VM and native levels. By taking advantage of these features, Pin is able to reduce
the instrumentation overhead to the point where only a 2 to 3x increase in execution time is incurred. As a result, developers
can take advantage of the advanced functionality provided by Pin without incurring a performance penalty much higher than
that caused by less flexible static analysis tools [Luk05].

3.2 Probing Tools

In the most basic terms, a probing tool is a mechanism that is able to selectively activate instrumentation routines that are
embedded within software at all levels of abstraction. As such, these tools are capable of obtaining performance-related
statistics from not only an application but also the various libraries and kernel routines associated with its execution. These
results can then be analyzed to determine not only where issues exist within an application, but also what chain of events
caused them to occur [Cantrill06].

Unlike BITs, which allow for the insertion of arbitrary code into an application, probing tools do not allow for the "random"
instrumentation of code. They instead rely on a set of well-defined "probes" that allow various data values and statistics to be
collected. Such probes can be defined by applications, libraries, or even kernel routines and then activated at application
run-time. Upon activation, the probes are enabled in a manner similar to that used by BITs to inject analysis routines. The
instrumented application is then allowed to proceed forward in execution as it typically would, triggering probes as it moves
through the system [Cantrill06].

Although the probe-based approach to performance analysis may seem somewhat limited compared to the methods employed
by BITs, these systems are typically far easier to use and obtain useful results from. This is because all possible probes are
pre-defined and typically labeled to indicate precisely what they monitor [Cantrill04]. As a result, the developer does not have
to concoct a customized analysis routine for every item they wish to monitor. This, in turn, can allow developers to quickly
diagnose performance issues, thus reducing the costs of software development.

Probe-based systems are in no way flawless, however, and despite their many benefits such tools still suffer from a number of
implementation-related issues. For instance, if a probe does not already exist for a particular data value or statistic embedded
within an external library or the kernel then there is no way to design one that can retrieve said value [Cantrill04]. As a result,
a probing tool will not necessarily be able to pinpoint the source of every performance issue within a given application. In
addition to this, probing tools require extensive support at both the kernel and library levels in the form of pre-defined probe

http://www.cse.wustl.edu/~jain/cse567-06/ftp/sw_monitors1/index.html 13 of 19

routines in order to be of any use to developers. Beyond this, it bears mentioning that since probes are functionally equivalent
to injected analysis routines, a performance hit will be incurred within an application when it is instrumented via a probe-based
tool [Cantrill04].

Due to the level of support required at all levels of the software hierarchy, probing tools are still somewhat of a rarity. In fact,
at the time of this writing the only widely known implementation is DTrace, a tool developed by Sun Microsystems for use
with the Solaris operating system. An overview of this tool is provided below as a means of better explaining how probing
mechanisms operate in the real world.

3.2.1 Overview of DTrace

DTrace is an analysis tool that operates via a set of probes embedded within both the Solaris operating system and its
supporting libraries. By selectively activating these probes, various data points within the software hierarchy at the application,
library, or kernel level can be recorded and correlated with one another to form a highly detailed profile of any targeted
application [Cantrill06]. Developers can then use this information to pinpoint application performance issues to their precise
origins.

The probes utilized by Dtrace are not defined by the tool itself, but instead supplied by a set of instrumentation providers.
Providers function independently of each other and implement subsets of the probes via kernel modules that Dtrace can gain
access to. Once loaded, each provider communicates the data points that it is capable of instrumenting to DTrace via a
well-defined API. DTrace can then instrument the system in a dynamic fashion, activating only those probes selected by the
end-user [Cantrill04, Cantrill06]. As a result, reducing the number of probes used to analyze a particular application will have
the positive side effect of reducing the performance overhead caused by the tool. In other words: reducing the amount of data
that is collected will enable results to be obtained in a more timely fashion.

To enable probes and define instrumentation routines via Dtrace, a C-like scripting language known as D is utilized. D
provides support for typical scripting language features such as variables and control structures, while also implementing
advanced features such as data aggregation and predicates. Data aggregation allows developers to combine information from
multiple probes into a single data source, thus simplifying the task of identifying related probes. Predicates, on the other hand,
give developers the ability to define logical expressions that are used to determine when the data from a given probe should be
recorded, thus allowing useless information to be discarded before it is committed to memory. By combining these
mechanisms with other facilities provided by the scripting language, developers can easily form complex instrumentation
routines that collect data from probes in a logical and organized manner [Cantrill04, Cantrill06].

Once defined in the D language syntax, instrumentation routines are passed into DTrace where they are activated and set about
the task of data collection. In doing so, these routines are converted into a simplified instruction set known as the "D
Intermediate Format" (DIF). This simple instruction is set is coupled with a VM at the kernel level and is primarily used to
ensure safety in probe firing. A safeguard such as this is required because instrumentation routines can be activated by probes
attached to delicate operations in the system such as process scheduling and could therefore potentially disrupt calculations if
not verified prior to execution. By using the DIF, delicate operations in the system can be safeguarded against the effects of
instrumentation, allowing analysis data to be collected without irreparably affecting the state of the system [Cantrill04,
Cantrill06].

Despite the advantages offered by the probing system that Dtrace implements, the tool suffers from a number of shortcomings.
For instance, the tool is unable to obtain performance data that is not explicitly defined via a probe. Therefore, while DTrace
does allow developers to activate over 30,000 probes there is still a chance that the data point required to analyze a specific
problem is not available. Beyond this, the use of Dtrace is currently tied exclusively to the Solaris operating system, making it
a somewhat useless tool for developers working on other platforms [Cantrill06]. It should be noted, however, that efforts are
currently underway to port the tool to both FreeBSD and Mac OS X [Cantrill06, Chaes06]. If such efforts are successful,
DTrace could potentially become the de-facto analysis tool at some point in the near future in much the same way gprof was in
the past.

3.3 Summary

As is the case with static analysis tools, the capabilities that a specific dynamic performance evaluation tool can provide
depend directly upon the types of analysis techniques that it implements. Broadly speaking, dynamic analysis tools can be
classified into one of two subtypes: binary instrumentation tools (BITs) or probing tools. Using these classifications, a
particular dynamic tool can be placed into one of these two subgroups and then described in a generalized manner. A
comparison of dynamic analysis tools assembled via this approach can be seen below in Table 2.

http://www.cse.wustl.edu/~jain/cse567-06/ftp/sw_monitors1/index.html 14 of 19

Subtype Features Shortcomings Example Tools

Binary
Instrumentation
Tools (BITs)

Instruments applications at the
binary level.

1.

Can analyze in real time to obtain
statistics from a running application.

2.

Make use of generalized APIs to
customize analysis and
instrumentation routines that can
monitor arbitrary events in an
application.

3.

Can often insert instrumentation
into the various libraries that an
application makes use of.

4.

Typically cannot gather
statistics at the kernel level.

1.

Analysis and instrumentation
routines created with one tool
are often incompatible with all
others.

2.

Can require a significant
investment of time to obtain
useful results.

3.

Pin1.
Vertical
Profiling

2.

Adept3.
Dynamo
RIO

4.

Probing Tools

Instruments applications at the
binary level.

1.

Many implementations are able to
obtain statistics at both the library
and kernel level.

2.

Relies on a set of pre-defined
probes to determine the types of
values and events that can be
monitored.

3.

Make use of generalized APIs that
can create customized analysis
routines that aggregate and examine
values of various probes.

4.

Additional probes beyond the
set that is provided cannot be
created, thus limiting the
scope of the tool.

1.

Require specialized support at
all levels of the software
hierarchy to implement.

2.

Probes available in one
implementation may not
match those available on a
different system.

3.

Can require a significant
investment of time to obtain
useful results.

4.

DTrace1.
DProbe2.
Linux
Trace
Toolkit

3.

Table 2: Comparison of Dynamic Analysis Tools [Cantrill04, Cantrill06, Luk05, Kumar05, Zhao06]

As can be seen in the table, binary instrumentation and probing tools take two very different approaches to dynamic
instrumentation. Whereas BITs typically allow arbitrary instrumentation at both the application and library levels, probing
tools only allow for selective instrumentation, but are able to do so at all levels of the software hierarchy [Cantrill04,
Kumar05]. In a sense, it can be said that the BIT approach allows for a more detailed analysis at fewer levels of abstraction,
while probing tools allow for more generalized analysis across a larger set of interactions. Therefore, when selecting a binary
tool for a specific performance evaluation task, the developer should keep in mind the types of relationships they wish to
analyze before choosing any individual implementation.

Beyond this, it should be noted that despite their apparent differences, all binary tools share a number of common
shortcomings. Chief among these being the fact that binary tools have a somewhat steep learning curve associated with their
use caused by the fact that they typically rely on proprietary scripting language to define instrumentation routines [Luk05,
Cantrill04]. Developers should therefore be sure to allocate adequate time towards learning the intricacies of a given tool
before trusting any performance analysis results that are generated from it

Back to Table of Contents

4. Hybrid Analysis Tools

The developers of hybrid analysis tools take a blended approach to application profiling by combining both static and dynamic
instrumentation techniques to form a unified statistics-gathering module [Hundt00, Srivastava01]. This, in turn, allows them to
selectively implement only the most effective features that each class of tools has to offer. As a result, these tools are often
capable of providing a level of utility unmatched by any single-purpose analysis mechanism currently available.

Due to the blended and variant nature of these types of tools, it is somewhat difficult to provide an accurate description of how

http://www.cse.wustl.edu/~jain/cse567-06/ftp/sw_monitors1/index.html 15 of 19

a "typical" implementation would function. It is worth nothing, however, that the run times of instrumented applications are
typically higher when hybrid tools are utilized than when any other single-purpose profiling mechanism is selected. This
additional overhead can be attributed to the fact that certain types of static and dynamic instrumentation mechanisms cannot
execute in parallel with one another, and thus the performance issues inherent to both will effectively add together when such
techniques are applied to the same application [Hundt00]. Hybrid analysis tools should therefore only be used in cases where
they are capable of offering the developer useful statistical data that cannot be obtained through any other means.

As is the case with dynamic instrumentation techniques, hybrid analysis tools have not yet been widely adopted by the vast
majority of software developers. This is likely due to the fact that no commercial-level implementations currently exist, and
thus developers are somewhat reluctant to accept what they view as "unproven" technology. A number of interesting
research-oriented implementations of such tools do exist. The remainder of this section contains an in-depth description of one
such tool (HP Caliper) in an effort to show how hybrid analysis techniques can be applied in the real world.

4.1 Overview of HP Caliper

HP Caliper is a framework for HP-UX that aids in the creation of hybrid analysis tools for IA-64 microprocessors. Through the
use of foundations provided by the software, developers can design customized data gathering routines that implement support
for both hardware counters and binary instrumentation techniques [Hundt00]. Once completed, these routines can be combined
to form a semi-independent tool that is capable of analyzing application performance issues in multiple levels of the software
hierarchy.

In order to define instrumentation routines via HP Caliper a C-based API is used. By programming to the specifications of this
API, hardware-counter manipulation routines can be defined alongside those that depend on dynamic instrumentation.
Routines are typically attached to specific events in the system such as function calls, signal raised via processes, or the firing
of a timer. In this manner, a rich set of performance data can be collected for analysis purposes [Hundt00].

To gather hardware-level statistics via the HP Caliper API, the Performance Measurement Unit (PMU) included onboard
IA-64 microprocessors is leveraged. This module implements a set of filters in hardware that allow data gathering at a much
finer level of granularity than is possible with the performance counters onboard traditional CPUs. These filters can operate at
both the instruction and address levels allowing hardware statistics to be gathered in a bounded manner [Choi02]. In doing so,
both process and function-level data statistics can be collected with a minimal amount of software-based overhead.

Once defined via the API, instrumentation routines must be injected into a running program in order to gather statistical data.
To perform this task, HP Caliper makes use of the ttrace system call provided by HP-UX. After executing this system call, the
targeted application pauses and passes control to a kernel level routine that then injects the HP Caliper executable into the
programs address space. HP Caliper is then passed control of the application and sets about instrumenting it in the manner
specified by the end-user [Hundt00].

Instrumentation in HP Caliper is done by inserting break instructions at the entry points to each function in a targeted
applications address space. Once these breaks are inserted, the application is allowed to proceed as normal from the point
where HP Caliper took control of execution. Each time a break is encountered, however, HP Caliper regains control of the
program and inserts any instrumentation code associated with the routine to which the break is attached. In this manner,
applications are instrumented in a "lazy" fashion, allowing the tool to modify only those functions that are actually executed.
This, in turn, minimizes the performance impact that is incurred by using the tool [Hundt00].

While the architecture described above allows HP Caliper to perform a number of powerful analysis tasks, it suffers for a few
significant shortcomings. For example, the tool cannot instrument kernel routines due to the fact that the kernel executes in a
separate address space than user-level applications. It is therefore not useful in cases where kernel-level code is the source of a
performance bottleneck. Furthermore, the tool is primarily targeted for use on the HP-UX operating system, with only a partial
Linux port currently available [Hundt00]. As a result, it is nothing more than a novelty for the vast majority of developers. For
the small subset that can take advantage of the tool, however, HP Caliper provides a rich feature set that allows developers to
pinpoint application performance issues across multiple levels of system interaction.

Back to Table of Contents

Summary

As software has grown in complexity, developers have become increasingly reliant on the use of frameworks and abstraction

http://www.cse.wustl.edu/~jain/cse567-06/ftp/sw_monitors1/index.html 16 of 19

layers to implement new functionalities in a timely manner. In doing so, the ability to understand the precise manner in which
a given segment of code operates has been reduced, leading to software projects in which no one person quite understands how
the entire application functions [Cantrill04]. As a result, it has become nearly impossible to optimize applications using the
manual (or "by-hand") tuning techniques of the past.

In response to this issue, a variety of automated performance analysis tools have been developed. Typically, each of these tools
has attempted to address the needs of a specific subset of developers or provide support for a specialized type of analysis.
Generally speaking, however, any currently available tool can be placed into one of three subgroups based upon the types of
analysis mechanisms it implements. These classifications, commonly known as static, dynamic, and hybrid, are covered
in-depth in Sections 2 through 5 of this paper, respectively.

Briefly stated, static tools are designed to operate strictly outside of application binaries, using source-code instrumentation or
sampling techniques to obtain performance results [Graham82, HP06]. Dynamic tools, on the other hand, rely on binary-level
modifications of applications and their supporting libraries to obtain performance results with a potentially higher resolution
than their static contemporaries [Luk05, Cantrill04]. Finally, hybrid tools combine both static and dynamic techniques in an
attempt to obtain results at a level of clarity not possible with any single-use tool [Hundt00, Srivastava01]. A high level
overview of the features and shortcomings of each tool type can is provided below in Table 3.

Type Features Shortcomings Example Tools

Static
Analysis
Tools

Make use of source-code
modifications or sampling techniques
to obtain application performance
data.

1.

Many implementations can obtain
statistics at kernel, library, and
hardware levels.

2.

Typically simple to configure; require
a minimal investment of time to
obtain results from.

3.

In cases where sampling techniques
are utilized the results obtained are
approximate at best.

1.

Limited in scope in terms of the
types of values and events that can
be monitored.

2.

GProf1.
QProf2.
Oprofile3.
Perfsuite4.
Intel
vTune

5.

Dynamic
Analysis
Tools

Make use of binary level
instrumentation techniques to obtain
performance data.

1.

Some implementations can obtain
statistics at both the library and kernel
level.

2.

Allow for the monitoring of a wide
range of values and events via the use
of customizable analysis and/or
instrumentation routines.

3.

In cases where probing is utilized,
the set of probes that are available
can be somewhat limiting.

1.

Typically have a steep learning
curve; can be difficult to obtain
useful results from.

2.

Analysis and/or instrumentation
routines created with one tool are
typically incompatible with all other
implementations.

3.

Often intrisically tied a specific
operating system.

4.

Pin1.
DTrace2.

Hybrid
Analysis
Tools

Combine Static and Dynamic
Instumentation Techniques to Create a
Flexible Tool.

1.

Allow for the monitoring of a wide
range of values and events via the use
of customizable analysis and/or
instrumentation routines.

2.

Many implementations can obtain
statistics at kernel, library, and
hardware levels.

3.

Implementations often focus on one
analysis technique, with support for
all others merely "tacked" on.

1.

Analysis and/or instrumentation
routines created with one tool are
typically incompatible with all other
implementations.

2.

Can require a significant investment
of time to obtain useful results.

3.

HP
Caliper

1.

Vulcan2.

Table 3: High-Level Feature Set Listing for Each Type of Analysis Tool [Intel06, Zeichick03, IBM06, Anderson97,
Kufrin05b, Graham82, Noordergraaf02, Hough06, Cantrill04, Cantrill06, Luk05, Kumar05, Zhao06]

http://www.cse.wustl.edu/~jain/cse567-06/ftp/sw_monitors1/index.html 17 of 19

As can be seen in the above table, each type of analysis tool implements a somewhat unique feature set and is aimed at
diagnosing a different set of performance issues. It is therefore sometimes difficult to choose the ideal tool for a given analysis
task. In most cases, static analysis tools are used when generalized performance statistics about a program are required
[Anderson97]. Dynamic analysis tools, however, are ideal for use when attempting to pinpoint a specific performance issue in
an application [Cantrill04]. Hybrid analysis tools, by virtue of their mixed construction, can technically be used to handle any
type of performance evaluation task, although care should be taken to ensure that the selected tool supports static and dynamic
analysis in a balanced manner.

Regardless of the task at hand, analysis tools provide developers with a level of flexibility and functionality unmatched by
classical (manual) optimization methods. By taking the time to learn how to properly utilize the various types of performance
analysis tools available, developers can begin to sift through the abstractions in their programs and uncover the performance
issues that lie deep within their code. Once identified, these issues can often be eliminated with minimal effort, thus creating a
significant boost in performance for only a small investment of time. As a result, it can reasonably be assumed that as
applications continue to increase in complexity, developers will become increasingly reliant upon analysis tools to pinpoint the
performance issues within them.

Back to Table of Contents

References

[Luk05] Luk, C., et. al., "Pin: Building Customized Program Analysis Tools with Dynamic Instrumentation,"
Proceedings of the 2005 ACM SIGPLAN Conference on Programming Language Design and Implementation (PLDI
'05).
http://rogue.colorado.edu/Pin/docs/papers/pin-pldi05.pdf
Provides an Overview of Pin, a Binary-based Dynamic Analysis Tool; Also Includes Information About a Wide Variety
of Other Performance Evalutation Techniques.

1.

[Cantrill04] Cantrill, B., et. al., "Dynamic Intrumentation of Production Systems," Proceedings of the USENIX 2004
Annual Technical Conference (USENIX '04),
http://www.sun.com/bigadmin/content/dtrace/dtrace_usenix.pdf
Provides an Overview of DTrace, a Probe-based Dynamic Analysis Tool.

2.

[Graham82] Graham, S. L, et. al.,"Gprof: A Call Graph Execution Profiler," Proceedings of the 1982 SIGPLAN
Symposium on Compiler Construction (SIGPLAN '82).
http://www.stanford.edu/class/cs295/papers/p120-graham.pdf
Provides an Overview of gprof, a Source-level Static Analysis Tool.

3.

[Hundt00] Hundt, R., "HP Caliper: A Framework for Performance Analysis Tools." IEEE Concurrency [Volume 8,
Issue 4].
Provides an Overview of HP Caliper, a Hybrid Analysis Tool.

4.

[Kufrin05b] Kufrin, R., "Measuring and Improving Application Performance with PerfSuite," Linux Journal [Issue 135].
http://www.linuxjournal.com/article/7468
Provides an Overview of Perfsuite, a Hybrid Analysis Tool.

5.

[Anderson97] Anderson, J. M., et. al., "Continuous Profiling: Where Have All the Cycles Gone?," Proceedings of the
Sixteenth ACM Symposium on Operating Systems Principles (SOSP '97).
ftp://gatekeeper.research.compaq.com/pub/DEC/SRC/technical-notes/SRC-1997-016a.pdf
Provides an Overview of DCPI, a Binary-based Dynamic Analysis Tool; Also Includes a Wide Variety of Generalized
Information About Other Performance Analysis Tools.

6.

[Cantrill06] Cantrill, B., "Hidden in Plain Sight" Queue [Volume 4, Issue 1].
http://www.acmqueue.org/modules.php?name=Content&pa=showpage&pid=361&page=1
Provides an Overview of DTrace; Particular Attention Paid to Real World Use Cases of the Tool.

7.

[HP06] Hewlett Packard Corporation, "Installing and Using QProf,"
http://research.hp.com/research/linux/qprof/using_qprof.php4
Provides an Overview of qprof, a Sample-based (User-Level) Static Analysis Tool.

8.

http://www.cse.wustl.edu/~jain/cse567-06/ftp/sw_monitors1/index.html 18 of 19

[Levon03] Levon, J., "OProfile Internals,"
http://oprofile.sourceforge.net/doc/internals/index.html
Provides an Overview of OProfile, a Sample-based (Kernel-level) Static Analysis Tool.

9.

[Kufrin05a] Kufrin, R., "Perfsuite: An Accessible, Open Source Performance Analysis Environment for Linux,"
Proceedings of the Sixth International Conference on Linux Clusters (LCI-05),
http://perfsuite.ncsa.uiuc.edu/publications/LCI-2005.pdf
Provides an Overview of Perfsuite, a Static Analysis Tool that Makes Use of Hardware Counting Mechanisms.

10.

[Intel06] Intel Corportation, "vTune Performance Analyzer 8.0 for Linux: Getting Started Guide,"
http://cache-www.intel.com/cd/00/00/24/50/245027_245027.pdf
Provides an Overview of vTune, a Compound Static Analysis Tool.

11.

[Kumar05] Kumar, N., et. al., "Low Overhead Program Monitoring and Profiling," Proceedings of the 6th ACM
SIGPLAN-SIGSOFT Workshop on Program Analysis For Software Tools and Engineering (PASTE '05).
http://www.cs.pitt.edu/~childers/papers/PASTE05-Insop.pdf
Provides an Overview of Ins-Op, a Tool Designed to Optimize Instrumentation Routines Generated via Dynamic
Analysis Tools.

12.

[Srivastava94] Srivastava, A. and Eustace, A., "ATOM: A System For Building Customized Program Analysis Tools,"
Proceedings of the ACM SIGPLAN 1994 Conference on Programming Language Design and Implementation (PLDI
'94).
http://www.csl.cornell.edu/~sam/ece699/p528-srivastava_atom_retrospective.pdf
Provides an Overview of ATOM, an Offline Binary-Based Dynamic Analysis Tool.

13.

[Zhao06] Zhao, Q., et. al., "DEP: Detailed Execution Profile," Proceedings of the 15th International Conference on
Parallel Architectures and Compilation Techniques (PACT '06).
http://www.cs.virginia.edu/~pact2006/program/pact2006/pact064-zhao1.pdf
Provides an Overview of Adept, a Binary-based Dynamic Analysis Tool.

14.

[IBM06] IBM Corporation, "AIX Performance Tool Guide and Reference,"
http://publib.boulder.ibm.com/infocenter/pseries/v5r3/topic/com.ibm.aix.prftools/doc/prftools/prftools.pdf
Contains Information on Various Static and Dynamic Performance Analsyis Tools.

15.

[Noordergraaf02] Noordergraaf, L., et. al., "SMP System Interconnect Instrumentation for Performance Analysis",
Proceedings of the 2002 ACM/IEEE Conference on Supercomputing.
http://www.supercomp.org/sc2002/paperpdfs/pap.pap158.pdf
Provides an Overview of the Sunfire Link Hardware-based Statistical Sampling System.

16.

[Zeichick03] Zeichick, A., "AMD Code Analyst: Getting In Touch With Your Inner Code," DevX,
http://www.devx.com/amd/Article/17305
Provides an Overview of AMD Code Analyst, a Compound Static Analysis Tool.

17.

[Nikiosha96] Nikiosha, S., et. al., "Process-labeled Kernel Profiling: A New Facility to Profile System Activities,"
Proceedings of the USENIX 1996 Annual Technical Conference (USENIX '96),
http://www.usenix.org/publications/library/proceedings/sd96/full_papers/nishioka.txt
Provides an Overview of Various Static and Dynamic Performance Analysis Techniques.

18.

[Srivastava01] Srivistava, A., et. al., "Vulcan: Binary transformation in a distributed environment," MSR-TR-2001-50,
ftp://ftp.research.microsoft.com/pub/tr/tr-2001-50.pdf
Provides an Overview of Vulcan, a Hybrid Peformance Analysis Tool.

19.

[Chaes06] Chaes, Brendon, "Mac OS X Leopard Gets Sun's DTrace,"
http://www.zdnet.com.au/news/software/soa/Mac_OS_X_Leopard_gets_Sun_s_DTrace/0,130061733,139265767,00.htm
News Article Outlying Apple's Plans to Improve DTrace Support in the Next Revison of MacOS X.

20.

[Choi02] Choi, Y., "Design and Experience: Using the Intel Itanium 2 Processor Performance Monitoring Unit to
Implement Feedback Optimizations," Proceedings of the 2nd Workshop on EPIC Architectures and Compiler
Technology (EPIC-2),
http://systems.cs.colorado.edu/EPIC2/papers/s2-3-choi.pdf
Contains Information on the Advanced Hardware-based Sampling Mechanisms Included Onboard IA-64 Processors.

21.

http://www.cse.wustl.edu/~jain/cse567-06/ftp/sw_monitors1/index.html 19 of 19

[Hough06] Hough, R., et. al., "Cycle-Accurate Microarchitecture Performance Evaluation", IEEE Workshop on
Introspective Architecture (WISA '06),
http://www.arl.wustl.edu/projects/fpx/projects/liquid_arch/publications/statsmod.pdf
Provides an Overview of Statsmod, a Static Analysis Tool that Makes Use of Hardware Counting Mechanisms.

22.

[Sun01] Sun Microsystems, "Analyzing Program Performance with Sun Performance Workshop",
http://192.18.109.11/806-7989/806-7989.pdf
Provides an Overview of the Analysis Capabilities Provided by the Sun Performance Workshop.

23.

Back to Table of Contents

List of Acronyms

AMD Advanced Micro Devices
API Application Programming Interface
ARM Advanced RISC Machine
ATOM Analysis Tool for Object Manipulation
BIT Binary Instrumentation Tool
CIT Compile-time Instrumentation Tool
CT Compound Tool
HCT Hardware Counter Tool
HP Hewlett Packard Corporation
HP-UX Hewlett Packard Unix
IA-64 Intel Architecture 64
IBM International Business Machines Corporation
JIT Just-In-Time
L1 Level 1
L2 Level 2
PC Program Counter
RISC Reduced Instruction Set Computer
ST Sampling Tool
VM Virtual Machine
XML Extensible Markup Language

Back to Table of Contents

This report is available on-line at http://www.cse.wustl.edu/~jain/cse567-06/sw_monitors1.htm
List of other reports in this series
Back to Raj Jain's home page

