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Case Study:

Performance Analysis of a Diversified Router
Brandon Heller, brandon.heller@gmail.com

Abstract: 
Routers are responsible for forwarding the packets in today's Internet from source to destination.
Unfortunately, the Internet architecture has become resistant to change, in a way that kills new innovation.
One potential solution to this problem is the concept of Diversified Networking, which uses virtualization at 
the network layer to enable multiple concurrent networks with minimal design constraints. Washington
University is building a prototype diversified router on network processors, which are highly parallel 
processors optimized for network tasks. We present a survey of benchmarks for network processors, and
describe performance considerations for related systems. We also present an experimental design for
evaluating those factors affecting performance, along with preliminary results and analysis, for standard IPv4
packets.
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1.0 Introduction

When sometime mentions the word �Internet? they�re probably referring to today�s mix of end systems
and routers, all communicating over the IPv4 internetwork protocol. IPv4 is now over thirty years old, and is
really starting to show its age. We�re running low on unique Internet addresses, have hacked-on
mechanisms for ensuring quality of service, and have poor security. The cost to fix these deficiencies is so
high that we�re forced to live with these issues. Or are we? Network diversification presents one path to
change. It enables concurrently running architectures over a fixed substrate, through virtualized resources.
Tests for future internet protocols can be done at planet-scale more easily by network researchers, or
alternately, a virtualized platform may become the next Internet and enable any number of customized
internet protocols.

Section 2 will describe in more detail the concept on Network Diversification. Section 3 will then describe
network processing benchmarks, all which could eventually be run in a diversified network. Section 4 will
cover related systems, both PC and NP based. Section 5 will describe experiments to analyze the current
Diversified Router�s performance, and Section 6 will summarize these results.

2.0 Network Diversification

Figure 1: Diversified Network

used with permission from Jon Turner

Diversified networks consist of a shared physical substrate, virtual routers (metarouters), and virtual links
(metalinks), as shown in Figure 1. Virtualizing, or sharing the resources of routers, enables smooth and
incremental upgrades to new network services. Although this architecture may sound foreign, the substrate
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portion of the network is designed with similar components and techniques to today�s networks. Each
router in the substrate does the same general operations as a vanilla IPv4 router.

The diversified network idea will be integrated into the upcoming GENI project (Global Environment for 
Network Innovation), a shared testbed to be available to all network researchers. Before GENI can be built,
the substrate components must be demonstrated correct, be of reasonable cost, and perform at high speeds.
Washington University is building the Diversified Router to be one such prototype substrate component. By
being built on high-speed Network Processors (NPs), the speed should be high, and the cost not significantly 
higher than a regular multi-core x86 server. Although one of the main selling points of the Diversified Router
will be its ability to run multiple "slices" of a network, each with separate bandwidth provisioning and 
different services, all the tests in this document will focus on a regular IPv4 router. IPv4 is well-known, will
remain dominant in the years to come, and provides a nice base of comparison against existing systems.

2.1 Typical Router

Figure2: Typical Router

In general, a router receives a packet, looks up its next hop, and forwards the packet. Figure 2 shows a block
diagram of a router's operations. The vast majority of traffic passes through the fast path of a router, also
called the data plane. Each packet is received by a mix of hardware and software that converts physical-layer
information, such as photons or electrical impulses, to a packet format, typically Ethernet, in the Receive
block. The Ethernet header is first validated, then stripped from the packet, in the Ethernet Decapsulate
block. Next up is the IP header, which must also be validated, as per RFC1812, Requirements for IPv4
Routers, in the Parse block [RFC1812]. A lookup key is then extracted from the packet, which generally
includes the destination IP address and source and destination ports, in the Lookup block. The lookup result
includes the port on which the packet may leave, as well as an action to take upon the packet.

On occasion, the lookup will fail, forcing the packet to go through a separate exception path. The exception
path leads to a control plane, where higher-level decisions for packet forwarding are made. In the fast-path
Header Format block, the IP header is modified with the new destination and a new Ethernet header is
constructed. The packet is then sent to the Queue Manager (QM) block, which ensures all output ports are
treated fairly, then sent out a physical port by the Transmit Block. The data plane portion of a router must be
extremely fast, as routers are performance-specified by the rate at which they forward minimum-sized data
packets. In the case of a 10Gb/s router, over 16M minimum-sized Ethernet packets must be forwarded every
second! Achieving these speeds requires specialized hardware, which is where network processors come in.

2.2 Network Processors
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Figure2: Diversified Router and Network Processor detail

General-purpose processors (GPPs) like the Intel Pentium enable great flexibility, but are poorly suited for
network processing tasks. Five years ago, the common solution to enable high-speed routers was to create an
Application-Specific Integrated Circuit (ASIC). ASICs enable line-rate speeds, but are expensive, inflexible,
and the years they require to develop places the designer in financial risk. Recently, network processors
(NPs), a hybrid approach, have emerged. NPs combine the speed of ASICs with the programmability of
GPPs. They have a design optimized for high-throughput data movement and efficiently exploit thread-level
parallelism, as opposed to general-purpose processors, which are optimized for instruction-level parallelism.
The Intel IXP2850 is one example, as shown in Figure 3. It features multiple high-speed memory interfaces,
16 (!) multithreaded RISC data plane processing engines called MEs (Microengines), and on-die
coprocessors. All this power doesn�t come cheap; a dual IXP2850 system runs in the neighborhood of $10K
- but it is the lowest-cost way to get flexible 10 Gb/s processing power, even for minimum-size packets. The
prototype diversified router is built on one of these systems. Proper evaluation of its performance requires
knowledge of the structure of NPs, as well as benchmarks of the applications the system will run.

2.3 Diversified Router

The Diversified Router can seen in the left side of Figure 3. Linecards connect to the outside world, initially
the Internet. Once traffic has been validated by a Linecard NP, it is sent to either a general-purpose processor
router or a router NP, by way of a non-blocking crossbar switch. The router NPs are where the action is, and 
where the performance analysis will focus. Each NP is a blade in shared ATCA (Advanced
Telecommunications Architecture) chassis, and connected to an external switch over 1 Gb/s ports.

3.0 Network Processing Benchmarks

Since network processing generally happens on network processors, the benchmarks for NPs and NP apps are
often one and the same. The relative youth (less than 7years) of NPs has led to multiple benchmarks, none of
which is a definitive standard. It is important to understand these, even if they're not used yet on the
Diversified Router. They, or other such multi-application benchmarks, will eventually need to be
implemented on it.

3.1 CommBench

CommBench (CB) was the first NP-specific benchmark, created while the field was in a state of flux 
[Wolf00]. CB defines two groups of network applications, Header Processing Applications (HPA) and
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Payload Processing Applications (PPA), each with four selected workloads. Each workload focuses on a
small, computationally intense program kernel used in a network app, typically in the data plane portion of a 
router. The benchmarks are intended both for traditional routers, where little processing is performed for each
packet, as well as active routers, where a program may be executed along each router hop. 

expand on programs 

CB looks at three metrics:

instruction mix: static and dynamic code and kernel sizes
computational complexity: instructions at least once, instructions for 99% coverage, instructions for 
90% coverage
cache performance: hit rate

These metrics enable a comparison to more traditional SPEC embedded benchmarks intended for workstation
and personal computers, like those with MIPS, PowerPC, and ARM processors. The SPEC embedded
benchmark lacks a focus on I/O, which is extremely important in the network environment, where we must 
consider a wide range of input sizes. Another issue with SPEC is that performance for its constituent
benchmarks is unrelated to real-time constraints. A router that can handle packets at line rate, regardless of
packet distribution is a hard real-time system; a new packet must enter and exit every n microseconds, 
regardless of instruction or data cache state. In a workstation environment, throughput and response time of
complex applications is the key, rather than real-time processing of relatively simple kernels. The last issue
with SPEC for NPs is that it assumes a static environment. In a complex NP, the application has a dynamic
and unpredictable input stream. NPs often used a fixed control store rather than an instruction cache,
resulting in less space for data plane programs. As a result, CB programs are an order of magnitude smaller
than SPEC programs. CommBench is compared to MediaBench, a more recent benchmark that focuses on
media encoding and kernels. They both address input/output concerns, but transcoding is a small part of the
set of network apps, and control operations are excluded, which makes MediaBench weakly representative of
NPs. The authors note that new requirements push processing down closer to the network layer, and argue
that CB is a useful tool for evaluating and designing telecom network processors. They show examples for
deriving computational and I/O requirements given a CommBench output of one network computation
kernel. The authors also note that benckmarks can be controversial and change rapidly, a claim supported by
the fact that another NP benchmark came out the following year.

3.2 NetBench

NetBench (NB), released in 2001, covers a set of 9 applications representative of NPs [Memik01]. The
applications cover all levels of packet processing, from low-level code fragments to larger application-level 
programs. NB uses the following metrics:

instructions per cycle: instructions, cycles, IPC
instruction distribution 
branch prediction accuracy: address prediction rate, direction prediction rate 
cache behavior: data/instruction cache total accesses, data/instruction cache miss ration, L2 miss ratio 

Three separate benchmark levels are defined:

low or micro: operations near the link layer
routing: operations like IP routing
application level 

A comparison with MediaBench leads the authors to conclude that separate benchmark for NPs are a
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necessity. They use a 4-way superscalar processor model, similar to the Alpha, to characterize the workloads
in SimpleScalar. The comparison shows that media and communications systems have similar benchmark
results in a few metrics, however, there are stastically significant differences. For example, at the 90%
confidence interval, NetBench has a higher IPC level. Overall, the differences seems sufficient to warrant a
new benchmark. The test applications are implemented on an IXP1200 processor simulator, and show that a
6-core IXP1200 running at 200 MHz is significantly faster than a Pentium 1 GHz in most benchmarks, and in
some up to 50% faster.

The results of the study must taken with a grain of salt. In the early 2000�s there were up to 40 new network
processors released, some of which has superscalar organization, some which were chip multiprocessors
(CMP), some very-long instruction word (VLIW), and so on; any choice would have been reasonable. Since
then, the market has shaken out most of the competitors, leaving only CMPs, most with in-order RISC cores.
Another benchmark to include both the data and control plane portions of router applications was NpBench.
The authors claim that 10Gbps forwarding results in 19.5M packets per second. This is wrong; Ethernet
packets are 64B minimum with 12B required inter-frame spacing. But they�re close enough, and right that
the processing requirements are demanding and must be understood better to successfully engineering router
apps.

3.3 NpBench

NpBench (NPB) is another NP benchmark, but sliced differently from the others [Lee03]. It splits NP apps
into three functional groups: traffic-management and quality of service, security and media processing group,
packet processing. NPB is motivated by more complicated protocols and network services that now require
additional processing power, to the point that the communication bottleneck may have moved into the 
network nodes, rather than the old bottleneck of links between them. GPPs are flexible but cannot support
full line rates for small packets.

It evaluates the following metrics:

instruction mix
parallelism
cache behavior
required processing capability per packet

NpBench one is compared to other benchmarks. The main difference between it and CommBench is that like
most some NP benchmark suites, it does not focus on control plane tasks, those defined for flow 
management, signaling, higher-level protocols and other control tasks. NPB looks are both the control and
data planes. EEMBC and MiBench have some network apps, but only look at routing and encryption. The
benchmark results are all based on C language implementations and yield instructions required per packet at 
different line rates and processor frequencies.

3.4 PacketBench

The �bench?in PacketBench refers to workbench, rather than benchmark [Ramaswamy03]. It is a
�framework for implementing network processing applications and obtaining an extensive set of workload
characteristics? In other words, it does not define a specific benchmark or set of benchmarks, but creates a set
of tools to more easily create and run higher-level simulations. Those simulations can guide the choice of a
processor selection, application selection, or even be used to guide the creation of a new network processor
engine. The tools are designed not only for routers, but also for packet classification and payload modifiers.
The authors use the now-familiar argument that the workload on network nodes is totally different from
traditional server or workstation loads. Those workloads are generally very simple tasks operating on small
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chunks of data, and imply that SPEC or TPC are not applicable to the domain. PacketBench creates a
programming and simulation environment built on top of SimpleScalar, as well as easily implemented packet
processing functions. According to the authors, the result is an easier-to-program system that results in
realistic system behavior. One should be wary of this claim. NPs are selected for applications where speed
matters. This speed constraint is a strong motivator for assembly programming and highly optimized
communication functions. Almost by definition, one cannot recreate realistic system behavior, because the
compiler and low-level optimizations have such an influence on the performance. PacketBench outputs
enable detailed and processor-specific analysis, and provide input for analytic performance models. Its
metrics include:

instructions vs packet size (in bytes)
accesses to packet and non-packet memory
instruction/data memory sizes

4.0 Related Router Systems

The diversified router is being created for an upcoming NSF grant to create a national-scale testbed for
networking research. Critically evaluating its design requires, at minimum, comparing it to the prototype to
existing testbeds. For additional evaluation ideas, we�ll also look at other systems running on an IXP.

4.1 PC-based

PCs are often used for research routers, due to their flexibility and low cost.

4.1.1 PlanetLab

The leading testbed for network research is currently PlanetLab, a series of PC-based routers connected over 
the Internet [Peterson06]. Its use of general-purpose processors limits network speeds and its ability to
provide hard resource guarantees for repeatable experiments, but its distributed-service model is flexible and 
useful for network research, and many researchers have used it as a base for distributed processing.

4.1.2 PL-VINI

The Virtual Internet Infrastructure (VINI) is a project to extend the reach of PlanetLab from an overlay of 
PCs to a full substrate, i.e. a platform for simulating the entire internet, with all its protocols [Bavier06]. It
will let network researchers deploy and evaluate their ideas with real routing software, traffic loads, and 
network events. PL-VINI is an initial implementation, designed to demonstrate the viability of using
off-the-shelf software components, including the Click modular router, XORP router control plane, 
OpenVPN, VServers, VNET traffic isolation, and Linux.

The performance numbers for PL-VINI are disappointing, and really highlight the performance differences 
between GPPs and NPs. Specifically, PL-VINI reports a maximum throughput of 86.2 Mbps at 40% CPU
usage. This is an improvement over the 22.5 Mbps sent by a stock PlanetLab node. The measurements were
taken on a roughly 1-GHz PC, and it is highly likely that maximum-size Ethernet packets (~1500B) were
used. If we assume that per-packet costs dominate, a reasonable assumption, then throughput on PL-VINI for
min-size packets plummets to around 10Mb/s. The PL-VINI results are reported for real-time scheduling
priority, which is entirely unreasonable when multiple virtual routers are run on a node. These throughput
numbers would drop as more virtual routers are loaded. Jitter results are also reported, and come out
favorably. PL-VINI seems to have a reasonable jitter of 1.3 ms on a network link with 24.7ms delay. The
thing to take away from the PL-VINI discussion is the use of simple TCP throughput, jitter, and utilization as
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primary metrics. The NP-based Diversified Router will ideally have numbers for the same metrics.

4.1.3 Click Modular Router

The Click Modular Router is a set of Linux kernel modules to simplify the process of creating custom routers
[Kohler00]. Click includes a library of elements that can be flexibly connected to describe an application.
The built-in elements includes IPv4 forwarders, packet schedulers, lookup engines, and receive and transmit 
blocks. To enable faster speeds, Click runs in kernel space and synthesizes its own scheduler. The scheduler
uses polling rather than OS signals to reduce latency and increase throughput. The journal paper on Click
reports that a configuration can forward up to 333,000 minimum-size 64B IP packets, equal to 170 Mb/s, not 
bad for year-2000 hardware.

4.2 NP-Based

NP-based systems are often faster that general-purpose routers, but the flexibility comes at a price: high 
architectural exposure makes programming NPs extremely difficult . The following two systems attempt to
strike the right balance between programmability and performance.

4.2.1 NP-Click

NP-Click, unsurprisingly, is an extension of Click's ideas to the Network Processor field [Shah04]. It uses the
same application descriptions as Click, but to cope with the lack of C++, it implements a precompiler to 
generate code suitable for the IXP C compiler. As a result, the element implementations look very different.
For performance reasons, NP-Click lets the application developer define thread boundaries over elements, as 
well as data specifiers.

The most novel idea in NP-Click, and hardest to get right, is its ability to automatically map a Click 
description onto a set of processing engines in an NP. The mapping problem is formulated as an integer
linear program, which is an NP-hard technique, but one that results in reasonable times of around a second on
modern hardware. States and tasks are profiled for execution times, memory usage, and access time, then
optimized for throughput with a solver. The process produces an optimal assignment of states to memories,
tasks to processing elements, and links to communication resources. The strength is that one can change
thread boundaries without having to change the application description, while working at a higher-level that 
gets to correct code more quickly. The weakness is that it is not good for resource constrained applications,
and lacks performance guarantees.

4.2.2 ShaRE

ShaRE is an acronym for Shangri-La Runtime Environment, and was built as part of Ravi Kokku's PhD 
Thesis at UT Austin [Kokku05]. Similar to the Diversified Router, it is a system to manage multiple virtual
routers on a shared NP. If NP-level sharing is eventually desired on the Diversified Router, ShaRE provides a
nice model of how to partition tasks between processors and map them to an NP.

The Baker language used in ShaRE defines Packet Processing Stages (PPSes), which each consist of a finite 
amount of processing code, and an infinite dequeue-process-enqueue stage. Another component is the
Resource Abstraction Layer, which abstracts a programmer from the details of which processors their 
program is mapped onto, as well as which memories their data is mapped onto. A pipeline compiler enables
the PPSes to be mapped onto multiple processing engines. The last component is a runtime system that
performs adaptive reconfiguration. The runtime processor scheduler, Everest, is designed to be both agile and
wary. It is agile, in that it responds to workload changes quickly, but wary, in that it reduces the frequency of
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processor allocation changes. The scheduler minimizes delay variation, and migrates tasks through a save and
restore mechanism.

5.0 Performance Analysis

Now that we�ve covered similar systems and benchmarks, we�ll cover preliminary performance analysis
of the Diversified Router. Keep in mind that the router is a continuously evolving piece of software and
hardware, and that by the time you read this the performance numbers may be different. Still, there are
benefits to analyzing the factors affecting performance on an unfinished system. The first benefit is the
identification of performance bottlenecks; the second is an early base for comparison to other systems.

5.1 Simulation Setup

The experiments will run in the Intel Developer Workbench, which includes a cycle-accurate full-architecture
simulator. The simulator includes facilities for defining external links and input packets. To match the
hardware setup, five input and output ports are defined at 1 Gb/s each. The five input packet streams each run
at the full 1 Gb/s rate, and each cycles through a sequence of five packets. The sequence includes varying
destination addresses, to achieve full rate.

We�ll use the simulator-reported throughput. Since the simulator is cycle-accurate, replications would be
pointless. Throughput numbers are reported at cycle 40,000, where human inspection showed that the
throughput was reasonably stable. A better analysis would graph the throughput over time, to prove that the
simulation has reached a steady state, or simply run for many more cycles. Right now, this is a limitation of
the tool environment, and a utility is in the works to log throughput over time.

5.2 Experimental Setup

In this experiment, we will use the following factors:

A: packet size (min-size packets = -1, larger-size packets = +1)
B: presence of queue managers (QM = -1, no QM = +1)
C: parse block threading (4 threads = -1, 8 threads = +1)

Min-size packets are 78B at the chip and 90B at the wire, due to Ethernet�s 12B inter-frame spacing. These
packets are 78B, larger than the Ethernet minimum of 64B, because the current router uses an extra UDP/IP
tunnel for compatibility with PlanetLab. Presence of a QM refers to whether the full QM implementation or a
simple stub is used. Parse block threading refers to the number of threads parameter passed to the compiler,
and the mode in which the code is run; 4-thread mode yields 64 general-purpose registers (GPRs) per
hardware thread context, while 8-thread mode yields only 32 GPRs per context.

Each factor was chosen for its potential effect on throughput. Since the header-processing costs per packet
are constant, we expect that larger packets will yield greater throughput. The QM is a complicated block and
has the potential to be a bottleneck. For parse block threading, it�s not clear whether 4 or 8 threads is best.
With 4 threads, each thread has more registers available, which may lead to more efficient code. However,
more threads means that more latency can be hidden, leading to more efficient processor usage. Note that the
pipelined implementation may hide the real effects of some blocks, because the slowest block will cause the
majority of the variation. This experiment will assume a linear model for factor effects.

5.3 Experimental Results
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Table 1: Experimental Results

Results are shown in Table 1. The y column on the right represents the observed throughput in Mb/s. To
summarize the results:

Larger packets result in 464 Mb/s greater throughput than average, and account for 75.7% of the 
variation.
Removing the queue manager results in 148 Mb/s greater throughput than average, and accounts for 
7.7% of the variation.
The number of threads in the parse block has an inconsequential effect on throughput.
The interaction between larger packets and the queue manager results in 215 Mb/s lower throughput 
than average, accounting for 16.3% of the variation.
Other interactions were minimal.

The large effect of packet size is not surprising, given that header processing costs are dominant for smaller 
packets. The QM effect is not surprising, given that the code is compute-bound. The lack of a substantial
parse effect is a little bit surprising. In isolated tests, parse block threading had a huge effect on overall
throughput, however, here, its effect is masked by slower components. Lastly, there may be an explanation 
for the interaction between the QM and packet sizes. The QM is compute-bound for smaller packets; with
larger packets it may become latency-bound, thus having a greater effect than packet size alone.

Unfortunately, none of the configurations achieved full 5 Gb/s rates. This result either implies that the current
router is simply incapable of handling full rates for the packet sizes tested, or that unexpected interactions 
arise at higher rates. The next logical test is to understand the effect of packet sizes in greater detail. If
throughput is linear, then packet size is the main contributor to the variation. If not, interactions are throwing
off the results and should be investigated more closely. The transmit and receive blocks may also have
unexpected interactions at higher speeds, where memory headroom is reduced and memory latencies are 
higher.

5.4 Other Planned Experiments

Since packet size has such an effect on performance, examining it further would be logical. The next planned
test is to run packet streams with payload sizes between 0 and 1480B through the router. We�ll run the test
without a QM first, to better isolate the effects of packet size. If we assume fixed per-packet costs, which is
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the case for everything but the receive and transmit blocks, and the receive and transmit blocks are not the
bottlenecks, then one would expect to see a linear increase in traffic until the line rate total of 5 Gb/s is
reached, at which point the line should be flat. The next test will see if adding the QM results in similar
trends over packet sizes. Unexpected memory interaction might cause non-linear performance.

The next set of experiments will investigate the effects of the number of processors on throughput. The
current Diversified Router cannot run this experiment, because changing the number of processors (pipeline 
stages) would require repartitioning the processing, a painful task that may yield no speedup because of 
communication costs. A parallel organization, where each processor runs all the blocks (parse, lookup, and 
header format), may scale linearly with the number of processors. In fact, the original motivation for this case
study was to analyze the effect of parallel and pipelined processor organizations for the stages. This code
took too long to develop, but is nearing completion.

The parallel approach is easier to scale to higher speeds than the pipelined approach, which requires 
repartitioning the application or low-level optimizations to improve speed. The next planned test will look at
throughput from one to eight processors. I expect linear scaling up to 4 processors, with throughput
saturation around 5 Gb/s for minimum-size packets after that ?unless the QM is the bottleneck. The highest
numbers of processors may induce bus saturation, thus reducing the throughput.

6.0 Summary

The preliminary data suggests that packet size effects dominate the variation in router throughput in an
NP-based Diversified Router. More analysis is necessary to better quantize the sources of variance,
demonstrate that the test data truly represents throughput at steady-state, and verify statistical significance of
the results. Other systems come nowhere near the Diversified Router�s performance; the closest competitor,
PL-VINI, is ~500x slower for minimum-size packets. Other tests in the planning will lead to a greater
understanding of factors affecting its performance, and enable a direct comparison to existing systems, for
additional metrics. When the system is running at speed, the next steps will include implementing and testing
network processing benchmarks.
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ME Microengine 
NB NetBench 
NP Network Processors 
NPB NpBench 
NSF National Science Foundation 
PPS Packet Processing Stages 
QM Queue Manager 
RISC Reduced Instruction Set Computing 
Rx Receive 
ShaRE Shangri-La Runtime Environment 
SPEC Standard Performance Evaluation Council 
SRAM Static Random Access Memory 
Tx Transmit 
VINI Virtual Internet Infrastructure 
VLIW Very Long Instruction Word 
VPN Virtual Private Network 
XORP eXtensible Open-source Router Platform 
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