Testing Random Testing Random-Number Generators Number Generators

Raj Jain Washington University Saint Louis, MO 63131 Jain@cse.wustl.edu

These slides are available on-line at:

http://www.cse.wustl.edu/~jain/cse574-06/

- 1.Chi-square test
- 2.Kolmogorov-Smirnov Test
- 3. Serial-correlation Test
- 4.Two-level tests
- 5. K-dimensional uniformity or k-distributivity
- 6. Serial Test

7. Spectral Test

Testing Random-Number Generators

Goal: To ensure that the random number generator produces a random stream.

- \Box Plot histograms
- \Box Plot quantile-quantile plot
- \Box Use other *tests*
- \Box Passing a test is necessary but not sufficient
- \Box Pass \neq Good

Fail ⇒ Bad

- \Box \Box New tests \Rightarrow Old generators fail the test
- \Box Tests can be adapted for other distributions

Chi-Square Test

- \Box Most commonly used test
- \Box Can be used for any distribution
- \Box Prepare a histogram of the observed data
- \Box Compare observed frequencies with theoretical
- $k =$ Number of cells
- o_i = Observed frequency for *i*th cell
- e_i = Expected frequency

$$
D = \sum_{i=1}^{k} \frac{(o_i - e_i)^2}{e_i}
$$

 \Box $D=0 \implies$ Exact fit

 \Box *D* has a chi-square distribution with *k*-1 degrees of freedom. \Rightarrow Compare D with $\chi^2_{[1-\alpha,k-1]}$ Pass with confidence α if D is less

Example 27.1 Example 27.1

1000 random numbers with $x_0 = 1$

$$
x_n = (125x_{n-1} + 1) \bmod (2^{12})
$$

Chi-Square for Other Distributions

- \Box Errors in cells with a small e_i affect the chi-square statistic more
- \Box Best when e_i 's are equal.
- \Rightarrow Use an equi-probable histogram with variable cell sizes
- \Box Combine adjoining cells so that the new cell probabilities are approximately equal.
- \Box The number of degrees of freedom should be reduced to *k-r*-1 (in place of *k*-1), where r is the number of parameters estimated from the sample.
- \Box Designed for discrete distributions and for large sample sizes only \Rightarrow Lower significance for finite sample sizes and continuous distributions
- \Box If less than 5 observations, combine neighboring cells

Kolmogorov-Smirnov Test

- \Box Developed by A. N. Kolmogorov and N. V. Smirnov
- \Box Designed for continuous distributions
- \Box Difference between the observed CDF (cumulative distribution function) $F_0(x)$ and the expected cdf $F_e(x)$ should be small.

Kolmogorov-Smirnov Test

 $\Box K^+$ = maximum observed deviation below the expected cdf \Box K = minimum observed deviation below the expected cdf

$$
K^{+} = \sqrt{n} \mathbf{X}^{max} (F_o(x) - F_e(x))
$$

$$
K^- = \sqrt{n} \, \text{max} \left(F_e(x) - F_o(x) \right)
$$

 $\Box K^+ < K_{[I-\alpha;n]}$ and $K^- < K_{[I-\alpha;n]} \Rightarrow$ Pass at α level of significance. \Box Don't use max/min *of Fe*(x_i)- $F_o(x_i)$

□ Use
$$
F_e(x_{i+1}) - F_o(x_i)
$$
 for K

\n□ For $U(0, 1)$: $F_e(x) = x$

\n□ $F_o(x) = j/n$, where $x > x_1, x_2, \ldots, x_{j-1}$

\n□ $K^- = \sqrt{n}$ if $(x_i - \frac{j-1}{n})$

Washington University in St. Louis CSE574s

Example 27.2 Example 27.2

30 Random numbers using a seed of x_0 =15:

 $x_n = 3x_{n-1} \mod 31$

 \Box The numbers are: 14, 11, 2, 6, 18, 23, 7, 21, 1, 3, 9, 27, 19, 26, 16, 17, 20, 29, 25, 13, 8, 24, 10, 30, 28, 22, 4, 12, 5, 15.

The normalized numbers obtained by dividing the sequence by 31 are:

0.45161, 0.35484, 0.06452, 0.19355, 0.58065, 0.74194, 0.22581, 0.67742, 0.03226, 0.09677, 0.29032, 0.87097, 0.61290, 0.83871, 0.51613, 0.54839, 0.64516, 0.93548, 0.80645, 0.41935, 0.25806, 0.77419, 0.32258, 0.96774, 0.90323, 0.70968, 0.12903, 0.38710, 0.16129, 0.48387.

 $\Box K_{[0.9; n]}$ value for $n = 30$ and $a = 0.1$ is 1.0424

Chi-square vs. K-S Test

Serial-Correlation Test

- \Box Nonzero covariance \Rightarrow Dependence. The inverse is not true
- R_k = Autocovariance at lag $k = \text{Cov}[x_n, x_{n+k}]$

$$
R_k = \frac{1}{n-k} \sum_{i=1}^{n-k} (U_i - \frac{1}{2})(U_{i+k} - \frac{1}{2})
$$

- \Box For large *n*, R_k is normally distributed with a mean of zero and a variance of 1/[144(*ⁿ*-*k*)]
- \Box 100(1-α)% confidence interval for the autocovariance is:

$$
R_k \mp z_{1-\alpha/2}/(12\sqrt{n-k})
$$

For *k*≥ 1 Check if CI includes zero

 \Box For $k = 0$, $R_0 =$ variance of the sequence Expected to be 1/12 for IID $U(0,1)$

Example 27.3: Serial Correlation Test Example 27.3: Serial Correlation Test

$$
x_n = 7^5 x_{n-1} \mod (2^{31} - 1)
$$

Two-Level Tests Level Tests

- \Box If the sample size is too small, the test results may apply locally, but not globally to the complete cycle.
- \Box Similarly, global test may not apply locally
- \Box Use two-level tests
- [⇒]Use Chi-square test on *ⁿ* samples of size *k* each and then use a

Chi-square test on the set of *ⁿ* Chi-square statistics so obtained

- [⇒]Chi-square on Chi-square test.
- \Box Similarly, *K-S* on *K-S*
- \Box Can also use this to find a ``nonrandom'' segment of an otherwise random sequence.

k-Distributivity

- **E** k-Dimensional Uniformity
- \Box Chi-square \Rightarrow uniformity in one dimension \Rightarrow Given two real numbers a_1 and b_1 between 0 and 1 such that $b_1 > a_1$ $P(a_1 \leq u_n < b_1) = b_1 - a_1 \quad \forall b_1 > a_1$
- \Box This is known as 1-distributivity property of *un*.
- \Box The 2-distributivity is a generalization of this property in two dimensions:

$$
P(a_1 \le u_{n-1} < b_1 \text{ and } a_2 \le u_n < b_2)
$$
\n
$$
= (b_1 - a_1)(b_2 - a_2)
$$

For all choices of a_1 , b_1 , a_2 , b_2 in [0, 1], $b_1>a_1$ and $b_2>a_2$

k-Distributivity (Cont)

 \Box k-distributed if:

$$
P(a_1 \le u_n < b_1, \dots, a_k \le u_{n+k-1} < b_k)
$$

 $(b_1 - a_1) \cdots (b_k - a_k)$ \Box For all choices of a_i , b_i in [0, 1], with $b_i > a_i$, *i*=1, 2, ..., *k*. \Box

- \Box k-distributed sequence is always $(k-1)$ -distributed. The inverse is not true.
- \Box Two tests:
- 1. Serial test
- 2. Spectral test
- 3. Visual test for 2-dimensions: Plot successive overlapping pairs of numbers

Serial Test (Cont) Serial Test (Cont)

- Given $\{x_1, x_2, \ldots, x_n\}$, use $n/2$ non-overlapping pairs (x_1, x_2) , (x_3, x_4) x_4), ... and count the points in each of the K^2 cells.
- \Box Expected= $n/(2K^2)$ points in each cell.
- \Box Use chi-square test to find the deviation of the actual counts from the expected counts.
- \Box The degrees of freedom in this case are *K*2-1.
- \Box For *k*-dimensions: use *k*-tuples of non-overlapping values.
- \Box *k*-tuples must be non-overlapping.
- \Box Overlapping \Rightarrow number of points in the cells are not independent chi-square test cannot be used
- \Box In visual check one can use overlapping or non-overlapping.
- \Box In the spectral test overlapping tuples are used.
- Washington University in St. Louis CSE574s CSE574s ©2006 Raj Jain ■ Given n numbers, there are *n*-1 overlapping pairs, *n*/2 nonoverlapping pairs.

Spectral Test Spectral Test

- \Box Goal: To determine how densely the k-tuples $\{x_1, x_2, ..., x_k\}$ can fill up the *k*-dimensional hyperspace.
- \Box The *k*-tuples from an LCG fall on a finite number of parallel hyper-planes.
- \Box Successive pairs would lie on a finite number of lines
- \Box In three dimensions, successive triplets lie on a finite number of planes.

Example 27.6: Spectral Test Example 27.6: Spectral Test

 $x_n = 3x_{n-1} \mod 31$

Plot of overlapping pairs

 \Box In three dimensions, the points (x_n, x_{n-1}, x_{n-2}) for the above generator would lie on five planes given by:

$$
x_n = 2x_{n-1} + 3x_{n-2} - 31k \quad k = 0, 1, \dots, 4
$$

Obtained by adding the following to equation

$$
x_{n-1} = 3x_{n-2} - 31k_1 \quad k_1 = 0, 1, 2
$$

Note that $k+k_1$ will be an integer between 0 and 4.

Spectral Test (More) Spectral Test (More)

- \Box Marsaglia (1968): Successive k-tuples obtained from an LCG fall on, at most, $(k!m)^{1/k}$ parallel hyper-planes, where *m* is the modulus used in the LCG.
- \Box Example: $m = 2^{32}$, fewer than 2,953 hyper-planes will contain all 3-tuples, fewer than 566 hyper-planes will contain all 4 tuples, and fewer than 41 hyper-planes will contain all 10 tuples. Thus, this is a weakness of LCGs.
- \Box Spectral Test: Determine the max distance between adjacent hyper-planes.
- \sqcup Larger distance \Rightarrow worse generator
- \Box In some cases, it can be done by complete enumeration

Example 27.7 Example 27.7 Q Compare the following two generators: $x_n = 3x_{n-1} \mod 31$ $x_n = 13x_{n-1} \mod 31$ \Box Using a seed of $x_0=15$, first generator: 14, 11, 2, 6, 18, 23, 7, 21, 1, 3, 9, 27, 19, 26, 16, 17, 20, 29, 25, 13, 8, 24, 10, 30, 28, $22, 4, 12, 5, 15, 14.$ \Box Using the same seed in the second generator: 9, 24, 2, 26, 28, 23, 20, 12, 1, 13, 14, 27, 10, 6, 16, 22, 7, 29, 5, 3, 8, 11, 19, 30, 18, 17, 4, 21, 25, 15, 9.

Washington University in St. Louis CSE574s ©2006 Raj Jain

- **□** Every number between 1 and 30 occurs once and only once
- [⇒]Both sequences will pass the chi-square test for uniformity

- \Box Three straight lines of positive slope or ten lines of negative slope
- \Box Since the distance between the lines of positive slope is more, consider only the lines with positive slope.

$$
x_n = 3x_{n-1}
$$

\n
$$
x_n = 3x_{n-1} - 31
$$

\n
$$
x_n = 3x_{n-1} - 62
$$

- \Box **D** Distance between two parallel lines $y=ax+c_1$ and $y=ax+c_2$ is given by $|c_2 - c_1| / \sqrt{1 + a^2}$
- \Box The distance between the above lines is $31/\sqrt{10}$ or 9.80.

- \Box All points fall on seven straight lines of positive slope or six straight lines of negative slope.
- \Box Considering lines with negative slopes:

$$
x_n = -\frac{5}{2}x_{n-1} + k\frac{31}{2} \quad k = 0, 1, \dots, 5
$$

 \Box The distance between lines is: $\frac{(31/2)}{\sqrt{(1+(5/2)^2)}}$ or 5.76.

- \Box The second generator has a smaller maximum distance and, hence, the second generator has a better 2-distributivity.
- \Box The set with a larger distance may **not** always be the set with fewer lines.

- \Box Either overlapping or non-overlapping *k*-tuples can be used.
	- \triangleright With overlapping *k*-tuples, we have k times as many points, which makes the graph visually more complete.The number of hyper-planes and the distance between them are the same with either choice.
- \Box With serial test, only non-overlapping *k*-tuples should be used.
- \Box For generators with a large *^m* and for higher dimensions, finding the maximum distance becomes quite complex. See Knuth (1981)

- 1. Chi-square test is a one-dimensional test Designed for discrete distributions and large sample sizes
- 2.K-S test is designed for continuous variables
- 3. Serial correlation test for independence
- 4.Two level tests find local non-uniformity
- 5. k-dimensional uniformity $=$ k-distributivity tested by spectral test or serial test

Washington University in St. Louis CSE574s ©2006 Raj Jain

Exercise 27.1 Exercise 27.1

Generate 10,000 numbers using a seed of $x_0=1$ in the following generator:

$$
x_n = 7^5 x_{n-1} \bmod (2^{31} - 1)
$$

Classify the numbers into ten equal size cells and test for uniformity using the chi-square test at 90% confidence.

Exercise 27.2 Exercise 27.2

Generate 15 numbers using a seed of $x_0=1$ in the following generator:

$$
x_n = (5x_{n-1} + 1) \mod 16
$$

Perform a *K-S* test and check whether the sequence passes the test at a 95% confidence level.

Exercise 27.3 Exercise 27.3

Generate 10,000 numbers using a seed of $x_0=1$ in the following LCG:

$$
x_n = 48271x_{n-1} \bmod (2^{31} - 1)
$$

Perform the serial correlation test of randomness at 90% confidence and report the result.

Exercise 27.4 Exercise 27.4

Using the spectral test, compare the following two generators

$$
x_n = 7x_{n-1} \bmod 13
$$

$$
x_n = 11x_{n-1} \mod 13
$$

Which generator has a better 2-distributivity?