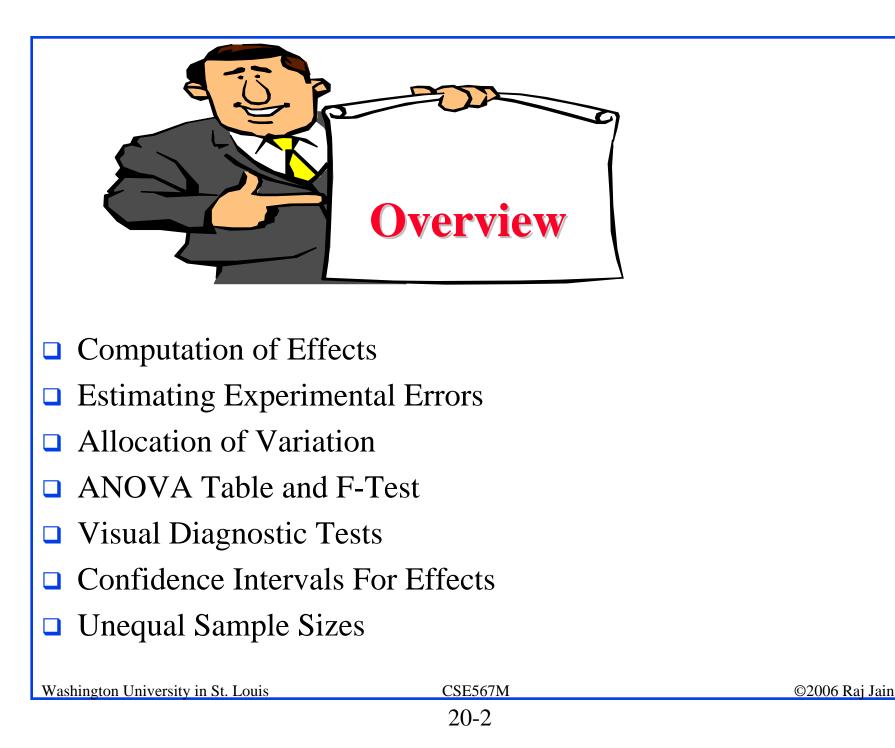
One Factor Experiments

Raj Jain Washington University in Saint Louis Saint Louis, MO 63130 Jain@cse.wustl.edu

These slides are available on-line at:

http://www.cse.wustl.edu/~jain/cse567-06/



One Factor Experiments

□ Used to compare alternatives of a single categorical variable.

$$y_{ij} = \mu + \alpha_j + e_{ij}$$

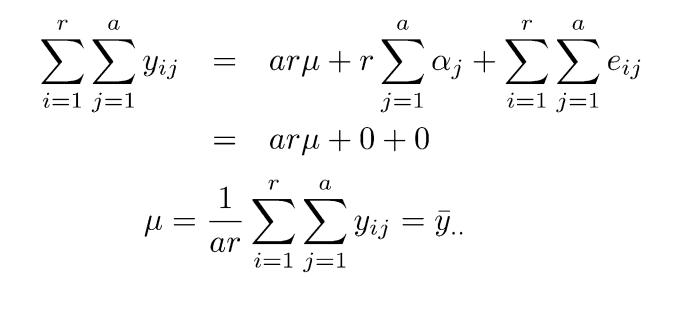
For example, several processors, several caching schemes

- r = Number of replications
- y_{ij} = ith response with jth alternative
- μ = mean response
- α_j = Effect of alternative j

$$e_{ij} = \text{Error term}$$

$$\sum \alpha_j = 0$$

Computation of Effects



Washington University in St. Louis

Computation of Effects (Cont)

$$\bar{y}_{.j} = \frac{1}{r} \sum_{i=1}^{r} y_{ij}$$

$$= \frac{1}{r} \sum_{i=1}^{r} (\mu + \alpha_j + e_{ij})$$

$$= \frac{1}{r} \left(r\mu + r\alpha_j + \sum_{i=1}^{r} e_{ij} \right)$$

$$= \mu + \alpha_j + 0$$

$$\alpha_j = \bar{y}_{.j} - \mu = \bar{y}_{.j} - \bar{y}_{..}$$

Example 20.1: Code Size Comparison

R	V	Ζ
144	101	130
120	144	180
176	211	141
288	288	374
144	72	302

□ Entries in a row are unrelated.

(Otherwise, need a two factor analysis.)

Example 20.1 Code Size (Cont)

	R	V	Z	
	144	101	130	
	120	144	180	
	176	211	141	
	288	288	374	
	144	72	302	
Col Sum	$\Sigma y_{.1} = 872$	$\Sigma y_{.2} = 816$	$\Sigma y_{.3} = 1127$	$\Sigma y_{} = 2815$
Col Mean	$\bar{y}_{.1} = 174.4$	$\bar{y}_{.2} = 163.2$	$\bar{y}_{.3} = 225.4$	$\mu = \bar{y}_{} = 187.7$
Col Effect	$\alpha_1 = \bar{y}_{.1} - \bar{y}_{}$	$\alpha_2 = \bar{y}_{.2} - \bar{y}_{}$	$\alpha_3 = \bar{y}_{.3} - \bar{y}_{}$	
	=-13.3	= -24.5	=37.7	

Example 20.1: Interpretation

- □ Average processor requires 187.7 bytes of storage.
- The effects of the processors R, V, and Z are -13.3, -24.5, and 37.7, respectively. That is,
 - > R requires 13.3 bytes less than an average processor
 - > V requires 24.5 bytes less than an average processor, and
 - > Z requires 37.7 bytes more than an average processor.

Estimating Experimental Errors

□ Estimated response for *j*th alternative:

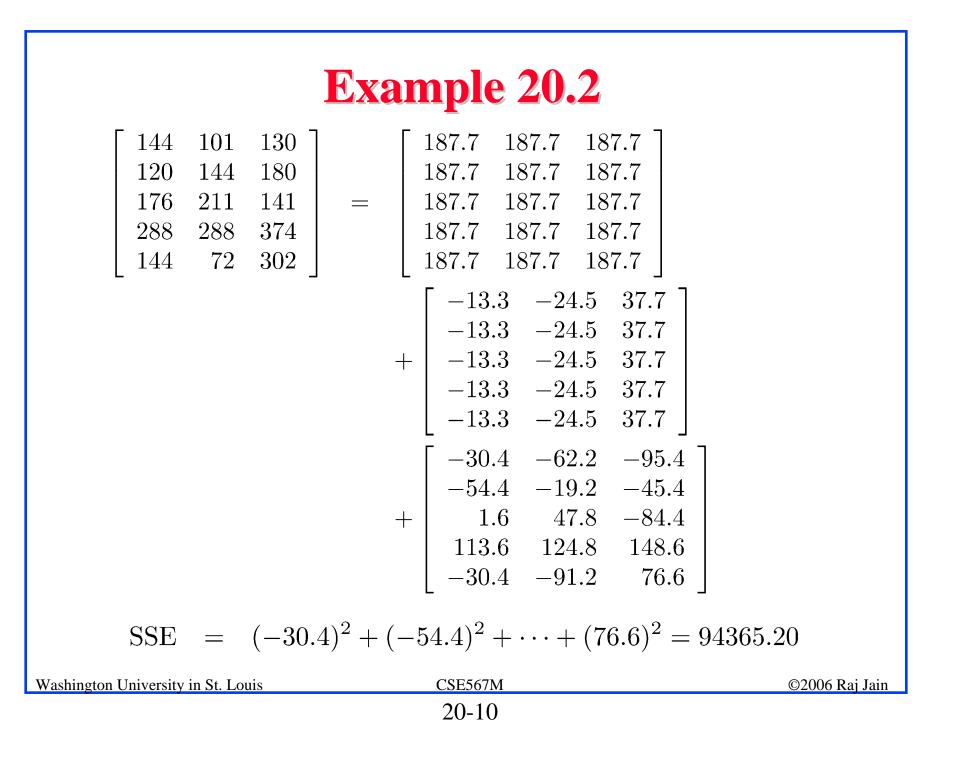
$$\hat{y}_j = \mu + \alpha_j$$

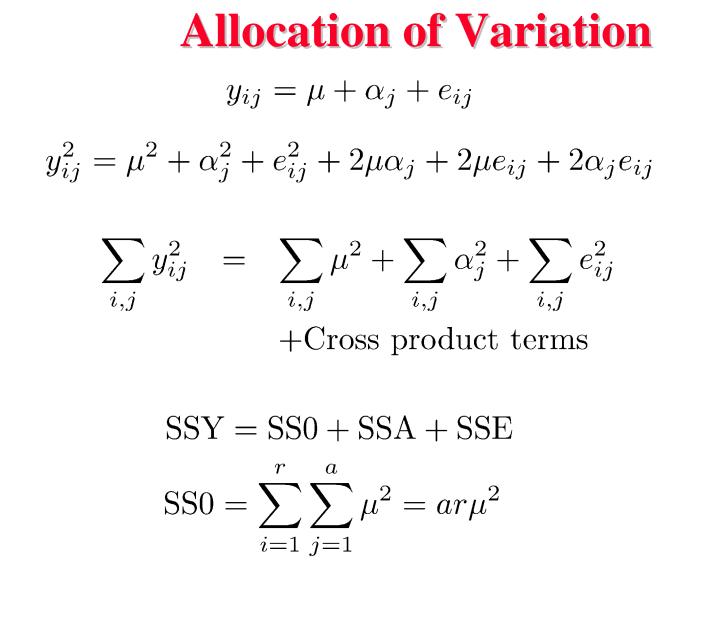
Error:

$$e_{ij} = y_j - \hat{y}_j$$

□ Sum of squared errors (SSE):

$$SSE = \sum_{i=1}^{r} \sum_{j=1}^{a} e_{ij}^{2}$$





Allocation of Variation (Cont)

SSA =
$$\sum_{i=1}^{r} \sum_{j=1}^{a} \alpha_j^2$$
$$= r \sum_{j=1}^{a} \alpha_j^2$$

□ Total variation of y (SST):

$$SST = \sum_{i,j} (y_{i,j} - \bar{y}_{..})^2$$
$$= \sum_{i,j} y_{ij}^2 - ar \bar{y}_{..}^2$$
$$= SSY - SS0 = SSA + SSE$$

Example 20.3

$$SSY = 144^{2} + 120^{2} + \dots + 302^{2} = 633639$$

$$SS0 = ar\mu^{2}$$

$$= 3 \times 5 \times (187.7)^{2} = 528281.7$$

$$SSA = r \sum_{j} \alpha_{j}^{2}$$

$$= 5[(-13.3)^{2} + (-24.5)^{2} + (37.6)^{2}]$$

$$= 10992.1$$

$$SST = SSY - SS0$$

$$= 633639.0 - 528281.7 = 105357.3$$

$$SSE = SST - SSA$$

$$= 105357.3 - 10992.1 = 94365.2$$
Washington University in St. Losis (SE567)

Example 20.3 (Cont)

Percent variation explained by processors = $100 \times \frac{10992.13}{105357.3} = 10.4\%$

- 89.6% of variation in code size is due to experimental errors (programmer differences).
 - Is 10.4% statistically significant?

Analysis of Variance (ANOVA)

- □ Importance ≠ Significance
- $\Box \text{ Important} \Rightarrow \text{Explains a high percent of variation}$
- Significance

 \Rightarrow High contribution to the variation compared to that by errors.

Degree of freedom

= Number of independent values required to compute

SSY	=	SS0	+	SSA	+	SSE
ar	=	1	+	(a-1)	+	a(r-1)

Note that the degrees of freedom also add up.

F-Test

□ Purpose: To check if SSA is *significantly* greater than SSE.

Errors are normally distributed \Rightarrow SSE and SSA have chisquare distributions.

The ratio $(SSA/v_A)/(SSE/v_e)$ has an F distribution.

```
where v_A = a-1 = degrees of freedom for SSA
```

```
v_e = a(r-1) = degrees of freedom for SSE
```

```
Computed ratio > F_{[1-\alpha; \nu_A, \nu_e]}

\Rightarrow SSA is significantly higher than SSE.
```

SSA/ v_A is called mean square of A or (MSA). Similary, MSE=SSE/ v_e

AN	OVA Ta	ble for	One	Factor I	Expe	riments
Compo-	Sum of	%Variation	DF	Mean	F-	F- Tabla
$\begin{array}{c} \text{nent} \\ y \\ \bar{y} \\ \end{array}$	$\frac{\text{Squares}}{\text{SSY}=\sum y_{ij}^2}$ $\frac{y_{ij}^2}{\text{SS0}=ar\mu^2}$		ar 1	Square	Comp.	Table
9 y- <u>ÿ</u>	SST=SSY-SS0	100	ar-1			
А	$SSA = r\Sigma \ \alpha_i^2$	$100\left(\frac{\mathrm{SSA}}{\mathrm{SST}}\right)$	a-1	$MSA = \frac{SSA}{a-1}$	$\frac{\text{MSA}}{\text{MSE}}$	$F_{\substack{[1-\alpha;a-1,\\a(r-1)]}}$
е	SSE=SST- SSA	$100\left(\frac{\text{SSE}}{\text{SST}}\right)$	a(r-1)	$MSE = \frac{SSE}{a(r-1)}$		
Washington U	Iniversity in St. Louis		CSE567M	[©2006 Raj Jain

Example 20.4: Code Size Comparison

Compo-	Sum of	%Variation	DF	Mean	F-	F-
nent	Squares			Square	Comp.	Table
У	633639.00					
$y_{}$	528281.69					
у- <i>У</i>	105357.31	100.0%	14			
А	10992.13	10.4%	2	5496.1	0.7	2.8
Errors	94365.20	89.6%	12	7863.8		
	$s_e = \sqrt{\mathrm{MS}}$	$\overline{\mathbf{E}} = \sqrt{7863.7}$	$\overline{7} = 88$	8.68		

□ Computed F-value < F from Table

 \Rightarrow The variation in the code sizes is mostly due to experimental errors and not because of any significant difference among the processors.

Visual Diagnostic Tests

Assumptions:

- 1. Factors effects are additive.
- 2. Errors are additive.
- 3. Errors are independent of factor levels.
- 4. Errors are normally distributed.
- 5. Errors have the same variance for all factor levels.

Tests:

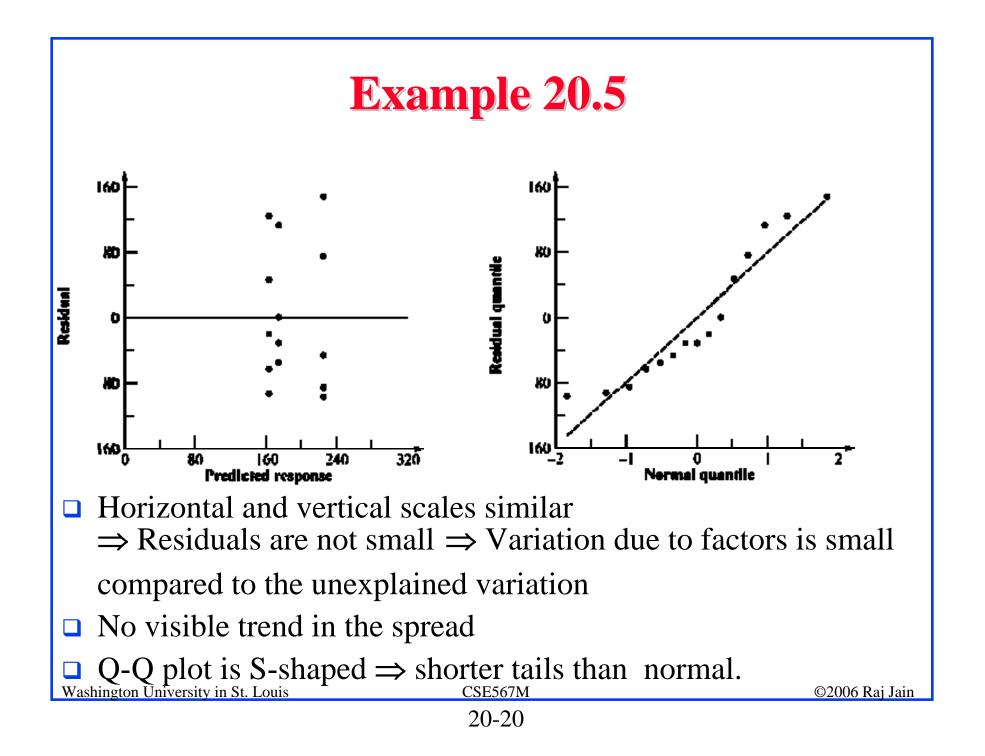
Residuals versus predicted response:

No trend \Rightarrow Independence

Scale of errors << Scale of response

 \Rightarrow Ignore visible trends.

□ Normal quantilte-quantile plot linear \Rightarrow Normality



Confidence Intervals For Effects

Estimates are random variables

$ \frac{\mu + \alpha_{j}}{\sum_{j=1}^{a} h_{j} \alpha_{j}, \sum_{j=1}^{a} h_{j} = 0} \frac{\bar{y}_{.j}}{\sum_{j=1}^{a} h_{j} \bar{y}_{.j}} \sum_{j=1}^{a} \frac{s_{e}^{2}/r}{\sum_{j=1}^{a} s_{e}^{2} h_{j}^{2}/r}}{\sum_{a(r-1)}^{a} \frac{\sum_{j=1}^{e} h_{j} \bar{y}_{.j}}{a(r-1)}} $	Parameter	Estimate	Variance
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	μ	$ar{y}_{}$	C7
$ \frac{\sum_{j=1}^{a} h_{j} \alpha_{j}, \sum_{j=1}^{a} h_{j} = 0}{s_{e}^{2}} \sum_{j=1}^{g} h_{j} \bar{y}_{j}} \sum_{j=1}^{g} \frac{\sum_{j=1}^{a} h_{j} \bar{y}_{j}}{\sum_{a(r-1)}^{e} \frac{\sum_{j=1}^{a} h_{j} \bar{y}_{j}}{a(r-1)}} $	$lpha_j$	$ar{y}_{.j}$ - $ar{y}_{}$	$s_e^2(a-1)/ar$
$\frac{s_e^2}{a(r-1)} \qquad \qquad \frac{\sum_{ij} e_{ij}^2}{a(r-1)}$			$\circ e/$:
	$\sum_{j=1}^{a} h_j \alpha_j, \sum_{j=1}^{a} h_j = 0$	$\sum_{j=1}^{a} h_j \bar{y}_{.j}$	$\sum_{j=1}^a s_e^2 h_j^2/r$
	s_e^2	$\frac{\sum e_{ij}^2}{a(r-1)}$	
Degrees of freedom for errors $= a(r-1)$			

□ For the confidence intervals, use t values at a(r-1) degrees of freedom.

□ Mean responses:
$$\hat{y}_j = \mu + \alpha_j$$

Contrasts
$$\sum h_j \alpha_j$$
: Use for $\alpha_1 - \alpha_2$

Example 20.6: Code Size Comparison

Error variance
$$s_e^2 = \frac{94365.2}{12} = 7863.8$$

- Std Dev of errors = $\sqrt{\text{(Var. of errors)}}$ = 88.7
- Std Dev of $\mu = s_e / \sqrt{ar} = 88.7 / \sqrt{15} = 22.9$

Std Dev of
$$\alpha_j = s_e \sqrt{\{(a-1)/(ar)\}}$$

= $88.7\sqrt{(2/15)} = 32.4$

Washington University in St. Louis

Example 20.6 (Cont)

- □ For 90% confidence, $t_{[0.95; 12]} = 1.782$.
- □ 90% confidence intervals:

$$\mu = 197.7 \mp (1.782)(22.9) = (146.9, 228.5)$$

$$\alpha_1 = -13.3 \mp (1.782)(32.4) = (-71.0, 44.4)$$

$$\alpha_2 = -24.5 \mp (1.782)(32.4) = (-82.2, 33.2)$$

$$\alpha_3 = 37.6 \mp (1.782)(32.4) = (-20.0, 95.4)$$

- The code size on an average processor is significantly different from zero.
- □ Processor effects are not significant.

Example 20.6 (Cont)

• Using h₁=1, h₂=-1, h₃=0, ($\sum h_j=0$): Mean $\alpha_1 - \alpha_2 = \bar{y}_{.1} - \bar{y}_{.2} = 174.4 - 163.2 = 11.2$ Std dev of $\alpha_1 - \alpha_2 = s_e \sqrt{(\sum h_j^2/r)}$ $= 88.7 \sqrt{(2/5)} = 56.1$ 90% CI for $\alpha_1 - \alpha_2 = 11.2 \mp (1.782)(56.1)$

$$= (-88.7, 111.1)$$

 \Box CI includes zero \Rightarrow one isn't superior to other.

Example 20.6 (Cont)

□ Similarly,

90% CI for
$$\alpha_1 - \alpha_3$$

= (174.4 - 225.4) \mp (1.782)(56.1)
= (-150.9, 48.9)
90% CI for $\alpha_2 - \alpha_3$
= (163.2 - 225.4) \mp (1.782)(56.1)
= (-162.1, 37.7)

□ Any one processor is not superior to another.

Unequal Sample Sizes

$$y_{ij} = \mu + \alpha_j + e_{ij}$$

By definition:

$$\sum_{j=1}^{a} r_j \alpha_j = 0$$

Here, r_j is the number of observations at *j*th level.
 N =total number of observations:

$$N = \sum_{j=1}^{a} r_j$$

 α

Parameter Estimation

Parameter	Estimate	Variance
μ	$ar{y}_{}$	s_e^2/N
$lpha_j$	$ar{y}_{.j}$ - $ar{y}_{}$	$s_e^2(N-r_j)/(Nr_j)$
$\mu + lpha_j$	$ar{y}_{.j}$	s_e^2/r_j
$\Sigma h_j \alpha_j, \Sigma h_j = 0$	$h_j \; ar{y}_{.j}$	$s_e^2 \sum_{j=1}^a (h_j^2/r_j)$
s_e^2	$\sum e_{ij}^2 / \{N-a\}$	U I
Degrees	of freedom for err	ors = N-a
Washington University in St. Louis	CSE567M	©2006 Raj Jain

Analysis of Variance

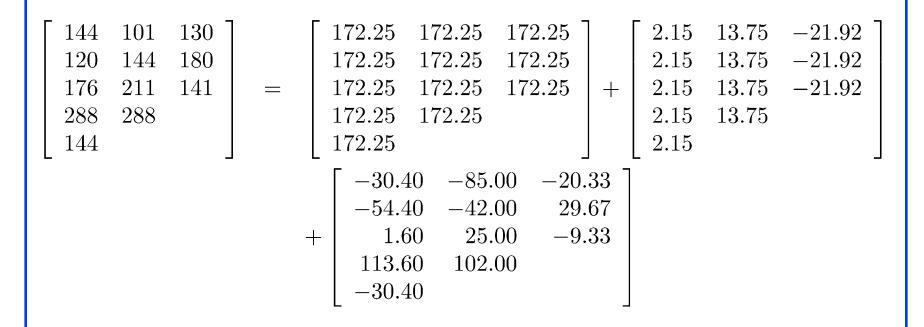
Compo-	Sum of	%Variation	DF	Mean	F-	F-
nent	Squares			Square	Comp.	Table
у	SSY= $\sum y_{ij}^2$		Ν			
$ar{y}_{}$	$SS0=N\mu^2$		1			
y- $ar{y}_{}$	SST=SSY-SS0	100	N-1			
А	$SSA = \sum_{j=1}^{a} r_j \alpha_j^2$	$100\left(\frac{\mathrm{SSA}}{\mathrm{SST}}\right)$	a-1	$MSA = \frac{SSA}{a-1}$	$\frac{MSA}{MSE}$	$F_{[1-\alpha;a-1,N-a]}$
е	SSE=SST- SSA	$100\left(\frac{\text{SSE}}{\text{SST}}\right)$	N-a	$MSE = \frac{SSE}{N-a}$		

	R	V	\mathbf{Z}		
	144	101	130		
	120	144	180		
	176	211	141		
	288	288			
	144				
Column Sum	872	744	451	2067	
Column Mean	174.40	186.00	150.33		172.25
Column effect	2.15	13.75	-21.92		

All means are obtained by dividing by the number of observations added.

□ The column effects are 2.15, 13.75, and -21.92.

Example 20.6: Analysis of Variance



Example 20.6 ANOVA (Cont)

□ Sums of Squares:

$$SSY = \sum y_{ij}^2 = 397375$$

$$SS0 = N\mu^2 = 356040.75$$

$$SSA = 5\alpha_1^2 + 4\alpha_2^2$$

$$+3\alpha_3^2 = 2220.38$$

$$SSE = (-30.40)^2 + (-54.40)^2 + \cdots$$

$$+(-9.33)^2 = 39113.87$$

$$SST = SSY - SS0 = 41334.25$$

$$Output Degrees of Freedom:$$

$$SSY = SS0 + SSA + SSE$$

$$N = 1 + (a-1) + N-a$$

$$12 = 1 + 2 + 9$$

$$Washington University in St. Louis CSE567M$$

©2006 Raj Jain

Example 20.6 ANOVA Table

Compo-	Sum of	%Variation	DF	Mean	F-	F-
nent	Squares			Square	Comp.	Table
У	397375.00					
$y_{}$	356040.75					
у- <i>У</i>	41334.25	100.00%	11			
А	2220.38	5.37%	2	1110.19	0.26	3.01
Errors	39113.87	94.63%	9	4345.99		
$s_e = \sqrt{\text{MSE}} = \sqrt{4345.99} = 65.92$						

 Conclusion: Variation due processors is insignificant as compared to that due to modeling errors.

Example 20.6 Standard Dev. of Effects

□ Consider the effect of processor Z: Since,

Model for One factor experiments:

$$y_{ij} = \mu + \alpha_j + e_{ij} \qquad \sum_{j=1}^a \alpha_j = 0$$

- Computation of effects
- □ Allocation of variation, degrees of freedom
- □ ANOVA table
- Standard deviation of errors
- Confidence intervals for effects and contracts
- Model assumptions and visual tests

Washington University in St. Louis

CSE567M

Exercise 20.1

For a single factor design, suppose we want to write an expression for α_i in terms of y_{ij} 's:

$$\alpha_j = a_{11j}y_{11} + a_{12j}y_{12} + \dots + a_{raj}y_{ra}$$

What are the values of $a_{..j}$'s? From the above expression, the error in α_i is seen to be:

$$e_{\alpha_j} = a_{11j}e_{11} + a_{12j}e_{12} + \dots + a_{raj}e_{ra}$$

Assuming errors e_{ij} are normally distributed with zero mean and variance σ_e^2 , write an expression for variance of e_{α_j} . Verify that your answer matches that in Table 20.5.

Washington University in St. Louis	CSE567M	©2006 Raj Jain
	20-35	

Homework

Analyze the following one factor experiment:

R	V	Ζ
145	102	131
120	144	180
177	212	142
288		
144		

- 1. Compute the effects
- 2. Prepare ANOVA table
- 3. Compute confidence intervals for effects and interpret
- 4. Compute Confidence interval for α_1 - α_3
- 5. Show graphs for visual tests and interpret