

2kr Factorial Designs r Factorial Designs

\Box *r* replications of 2^k Experiments

 \Rightarrow 2^kr observations.

[⇒]Allows estimation of experimental errors.

□ Model:

$$
y = q_0 + q_A x_A + q_B x_B + q_{AB} x_A x_B + e
$$

 \Box e = Experimental error

Computation of Effects Computation of Effects

Simply use means of r measurements

 \Box Effects: $q_0 = 41$, $q_A = 21.5$, $q_B = 9.5$, $q_{AB} = 5$.

Estimation of Experimental Errors Estimation of Experimental Errors

E Estimated Response:

 $\hat{y}_i = q_0 + q_A x_{Ai} + q_B x_{Bi} + q_A B x_{Ai} x_{Bi}$

Experimental Error = Estimated - Measured

$$
e_{ij} = y_{ij} - \hat{y}_i
$$

= $y_{ij} - q_0 - q_A x_{Ai} - q_B x_{Bi} - q_A B x_{Ai} x_{Bi}$

$$
\sum_{i,j} e_{ij} = 0
$$

Sum of Squared Errors: $SSE = \sum \sum e_{ij}^2$ $i=1$ $j=1$

Experimental Errors: Example Experimental Errors: Example

□ Estimated Response:

 $\hat{y}_1 = q_0 - q_A - q_B + q_{AB} = 41 - 21.5 - 9.5 + 5 = 15$

Experimental errors:

 $e_{11} = y_{11} - \hat{y}_1 = 15 - 15 = 0$

Allocation of Variation Allocation of Variation

T Total variation or total sum of squares:

$$
\text{SST} = \sum_{i,j} (y_{ij} - \bar{y}_{..})^2
$$

 $y_{ij} = q_0 + q_A x_{Ai} + q_B x_{Bi} + q_A B x_{Ai} x_{Bi} + e_{ij}$

$$
\sum_{i,j} (y_{ij} - \bar{y}_{..})^2 = 2^2 r q_A^2 + 2^2 r q_B^2 + 2^2 r q_{AB}^2 + \sum_{i,j} e_{ij}^2
$$

SST = SSA + SSB + SSAB + SSE

Derivation Derivation

 \Box Model:

 $y_{ij} = q_0 + q_A x_{Ai} + q_B x_{Bi} + q_A B x_{Ai} x_{Bi} + e_{ij}$ $\sum_{i,j} y_{ij} = \sum_{i,j} q_0 + \sum_{i,j} q_A x_{Ai}$ $+ \sum q_B x_{Bi} + \sum q_{AB} x_{Ai} x_{Bi} + \sum e_{ij}$ Since x's, their products, and all errors add to zero $\sum_{i,i} y_{ij} = \sum_{i,i} q_0 = 2^2 r q_0$
Mean response: $\bar{y}_{..} = \frac{1}{2^2 r} \sum_{i} y_{ij} = q_0$ Washington University in St. Louis CSE567M ©2006 Raj Jain

Derivation (Cont) Derivation (Cont)

Squaring both sides of the model and ignoring cross product terms:

$$
\sum_{i,j} y_{ij}^2 = \sum_{i,j} q_0^2 + \sum_{i,j} q_A^2 x_{Ai}^2 + \sum_{i,j} q_B^2 x_{Bi}^2 + \sum_{i,j} q_A^2 x_{Ai}^2 x_{Bi}^2 + \sum_{i,j} q_A^2 x_{Ai}^2 x_{Bi}^2 + \sum_{i,j} e_{ij}^2
$$

 $SSY = SS0 + SSA + SSB$ $+SSAB + SSE$

Derivation (Cont) Derivation (Cont)

Total variation:

$$
SST = \sum_{i,j} (y_{ij} - \bar{y}_{..})^2
$$

\n
$$
= \sum_{i,j} y_{ij}^2 - \sum_{i,j} \bar{y}_{..}^2
$$

\n
$$
= SSY - SS0
$$

\n
$$
= SSA + SSB + SSAB + SSE
$$

\nOne way to compute SSE:
\n
$$
SSE = SSY - 2^2r(q_0^2 + q_A^2 + q_b^2 + q_{AB}^2)
$$

\n
$$
SSB = SSY - 2^2r(q_0^2 + q_A^2 + q_b^2 + q_{AB}^2)
$$

\n
$$
SSB = SSY - 2^2r(q_0^2 + q_A^2 + q_b^2 + q_{AB}^2)
$$

\n
$$
SSB = SSY - 2^2r(q_0^2 + q_A^2 + q_b^2 + q_{AB}^2)
$$

\n
$$
SSB = SSY - 2^2r(q_0^2 + q_A^2 + q_b^2 + q_{AB}^2)
$$

Example 18.3: Memory-Cache Study SSY = $15^2 + 18^2 + 12^2 + 45^2 + \cdots + 75^2 + 75^2 + 81^2$ $= 27204$ SS0 = $2^2rq_0^2 = 12 \times 41^2 = 20172$ SSA = $2^{2}rq_{A}^{2} = 12 \times (21.5)^{2} = 5547$ SSB = $2^2 r q_B^2 = 12 \times (9.5)^2 = 1083$ $SSAB = 2^2 r q_{AB}^2 = 12 \times 5^2 = 300$ SSE = $27204 - 2^2 \times 3(41^2 + 21.5^2 + 9.5^2 + 5^2)$ $= 102$ $SST = SSY - SS0$ $= 27204 - 20172 = 7032$ Washington University in St. Louis CSE567M ©2006 Raj Jain

- $SSA + SSB + SSAB + SSE$
- $= 5547 + 1083 + 300 + 102$
- $= 7032 = SST$

Factor A explains 5547/7032 or 78.88% Factor B explains 15.40% Interaction AB explains 4.27% 1.45% is unexplained and is attributed to errors.

Confidence Intervals For Effects Confidence Intervals For Effects

 \Box Effects are random variables. \Box Errors $\sim N(0,\sigma_e) \Rightarrow y \sim N(\bar{y}_{\cdot} , \sigma_{\epsilon})$

$$
q_0 = \frac{1}{2^2r}\sum_{i,j}y_{ij}
$$

 \Box q₀ = Linear combination of normal variates \Rightarrow q₀ is normal with variance $\sigma_e^2/(2^2r)$

Variance of errors:

$$
s_e^2 = \frac{1}{2^2(r-1)} \sum_{ij} e_{ij}^2 = \frac{\text{SSE}}{2^2(r-1)} \triangle \text{MSE}
$$

 \Box Denominator = $2^2(r-1) = #$ of independent terms in SSE

 \Rightarrow SSE has 2²(r-1) degrees of freedom. Estimated variance of q_0 : $s_{q_0}^2 = s_e^2/(2^2r)$

Confidence Intervals For Effects (Cont) Confidence Intervals For Effects (Cont)

 \Box Similarly,

$$
s_{q_A} = s_{q_B} = s_{q_{AB}} = \tfrac{s_e}{\sqrt{2^2 r}}
$$

 \Box Confidence intervals (CI) for the effects: $q_i \mp t_{[1-\alpha/2;2^2(r-1)]} s_{q_i}$ \Box CI does not include a zero \Rightarrow significant

Example 18.4 Example 18.4

 \Box For Memory-cache study: Standard deviation of errors:

$$
s_e = \sqrt{\frac{\text{SSE}}{2^2(r-1)}} = \sqrt{\frac{102}{8}} = \sqrt{12.75} = 3.57
$$

 \Box Standard deviation of effects:

$$
s_{q_i} = s_e / \sqrt{(2^2 r)} = 3.57 / \sqrt{12} = 1.03
$$

or 90% Confidence: t_[0.95,8] = 1.86

□ Confidence intervals: $q_i \pm (1.86)(1.03) = q_i \pm 1.92$

Washington University in St. Louis CSE567M CSE567M ©2006 Raj Jain q_0 = (39.08, 42.91) $q_A=(19.58, 23.41)$ $q_B = (7.58, 11.41)$ $q_{AB} = (3.08, 6.91)$ \Box No zero crossing \Rightarrow All effects are significant.

Example 18.5 Example 18.5

Memory-cache study

 $u = q_A + q_B - 2q_{AB}$ Coefficients= 0, 1, 1, and $-2 \implies$ Contrast Mean $\bar{u} = 21.5 + 9.5 - 2 \times 5 = 11$ Variance $s_u^2 = \frac{s_e^2 \times 6}{22 \times 3} = 6.375$ Standard deviation $s_u = \sqrt{6.375} = 2.52$ $t_{[0.95:8]}$ =1.86 90% Confidence interval for u: $\bar{u} \mp t s_u = 11 \mp 1.86 \times 2.52 = (6.31, 15.69)$

Conf. Interval For Predicted Responses Conf. Interval For Predicted Responses

 \Box Mean response \hat{y} :

$$
\hat{y} = q_0 + q_A x_A + q_B x_B + q_{AB} x_A x_B
$$

 \Box The standard deviation of the mean of m responses:

$$
s_{\hat{y}_m} = s_e \left(\frac{1}{n_{\text{eff}}} + \frac{1}{m}\right)^{1/2}
$$

\n
$$
n_{\text{eff}} = \text{Effective deg of freedom}
$$

\n
$$
= \frac{\text{Total number of runs}}{1 + \text{Sum of DFS of params used in } \hat{y}}
$$

\n
$$
= \frac{2^2 r}{5}
$$

\n**Washington University in St. Louis**
\n
$$
= \frac{18.18}{18.18}
$$

Conf. Interval for Predicted Responses (Cont) Conf. Interval for Predicted Responses (Cont)

100(1-α)% confidence interval:

 $\hat{y} \mp t_{[1-\alpha/2;2^2(r-1)]} s_{\hat{y}_m}$

- \Box A single run (m=1):
- **□** Population mean (m=∞

Example 18.6: Memory Example 18.6: Memory-cache Study cache Study

 \Box For $x_A = -1$ and $x_B = -1$:

 \Box A single confirmation experiment:

$$
\hat{y}_1 = q_0 - q_A - q_B + q_{AB}
$$

= 41 - 21.5 - 9.5 + 5 = 15

 \Box Standard deviation of the prediction:

$$
s_{\hat{y}_1} = s_e \left(\frac{5}{2^2 r} + 1\right)^{1/2} = 3.57 \sqrt{\frac{5}{12} + 1} = 4.25
$$

Using $t_{[0.95:8]} = 1.86$, the 90% confidence interval is: \Box $15 \pm 1.86 \times 4.25 = (8.09, 22.91)$

□ Mean response for 5 experiments in future:

$$
s_{\hat{y}_1} = s_e \left(\frac{5}{2^2 r} + \frac{1}{m}\right)^{1/2}
$$

$$
= 3.57 \sqrt{\frac{5}{12} + \frac{1}{5}} = 2.20
$$

 \Box The 90% confidence interval is:

$$
15 \pm 1.86 \times 2.20 = (10.91, 19.09)
$$

 \Box Mean response for a large number of experiments in future:

$$
s_{\hat{y}} = s_e \left(\frac{5}{2^2 r}\right)^{1/2} = 3.57 \sqrt{\frac{5}{12}} = 2.30
$$

 The 90% confidence interval is: \Box $15 \pm 1.86 \times 2.30 = (10.72, 19.28)$

■ Current mean response: Not for future. Use contrasts formula.

$$
s_{\hat{y}} = \sqrt{\frac{s_e \sum h_i^2}{2^2 r}} = \sqrt{\frac{12.75 \times 4}{12}} = 2.06
$$

 \Box 90% confidence interval:

$$
15 \mp 1.86 \times 2.06 = (11.17, 18.83)
$$

Assumptions Assumptions

- 1. Errors are statistically independent.
- 2. Errors are additive.
- 3. Errors are normally distributed.
- 4. Errors have a constant standard deviation $\sigma_{\rm e}$.
- 5. Effects of factors are additive
	- ⇒ observations are independent and normally distributed with constant variance.

Visual Tests Visual Tests

1. Independent Errors:

- \Box Scatter plot of residuals versus the predicted response y_i
- \Box Magnitude of residuals < Magnitude of responses/10 ⇒ Ignore trends
- \Box Plot the residuals as a function of the experiment number

 \Box Trend up or down \Rightarrow other factors or side effects

- **2. Normally distributed errors**: Normal quantile-quantile plot of errors
- **3. Constant Standard Deviation of Errors**: Scatter plot of y for various levels of the factor Spread at one level significantly different than that at other ⇒ Need transformation

Multiplicative Models Multiplicative Models

\Box Additive model:

 $y_{ij} = q_0 + q_A x_A + q_B x_B + q_A B x_A x_B + e_{ij}$

 \Box Not valid if effects do not add. E.g., execution time of workloads.

*i*th processor speed= v_i instructions/second.

*j*th workload Size= w_i instructions

- The two effects multiply. Logarithm \Rightarrow additive model: \Box Execution Time $y_{ij} = v_i \times w_j$ $\log(y_{ij}) = \log(v_i) + \log(w_i)$
- **Q** Correct Model:

$$
y'_{ij} = q_0 + q_A x_A + q_B x_B + q_{AB} x_A x_B + e_{ij}
$$

Where, y'_{ij}=log(y_{ij})

Multiplicative Model (Cont) Multiplicative Model (Cont)

 \Box Taking an antilog of effects:

 $\rm u_A = 10$ qa, $\rm u_B$ =10qb, and $\rm u_{AB}$ =10qab

 \Box u_A= ratio of MIPS rating of the two processors

- \Box u_B= ratio of the size of the two workloads.
- \Box Antilog of additive mean $q_0 \Rightarrow$ geometric mean

$$
\dot{y} = 10^{q_0} = (y_1 y_2 \cdots y_n)^{1/n} \quad n = 2^2 r
$$

Example 18.8: Execution Times Example 18.8: Execution Times

Additive model is not valid because:

- u. Physical consideration \Rightarrow effects of workload and processors do not add. They multiply.
- \Box Large range for y. $y_{max}/y_{min} = 147.90/0.0118$ or 12,534 ⇒ log transformation
- \Box Taking an arithmetic mean of 114.17 and 0.013 is inappropriate.

Variation Explained by the Two Models Variation Explained by the Two Models

■ With multiplicative model:

- > Interaction is almost zero.
- \triangleright Unexplained variation is only 0.2%

Interpretation of Results Interpretation of Results

 $\log(y) = q_0 + q_A x_A + q_B x_B + q_{AB} x_A x_B + e$

 $\Rightarrow y = 10^{q_0} 10^{q_A x_A} 10^{q_B x_B} 10^{q_A x_A x_B} 10^e$

 $= 10^{0.03} 10^{-0.97x}$ $410^{-0.97x}$ $10^{0.03x}$ $4x$ 10^e

 $= 1.07 \times 0.107^{x_A} \times 0.107^{x_B} \times 1.07^{x_A x_B} 10^e$

- \Box The time for an average processor on an average benchmark is 1.07.
- \Box The time on processor A₁ is nine times (0.107⁻¹) that on an average processor. The time on A_2 is one ninth (0.107¹) of that on an average processor.
- **I** MIPS rate for A_2 is 81 times that of A_1 .
- **E** Benchmark B₁ executes 81 times more instructions than B₂.
- \Box The interaction is negligible.
- Washington University in St. Louis CSE567M CSE567M ©2006 Raj Jain ⇒ Results apply to all benchmarks and processors.

Transformation Considerations

- \Box \Box y_{max}/y_{min} small \Rightarrow Multiplicative model results similar to additive model.
- \Box Many other transformations possible.
- \Box Box-Cox family of transformations:

$$
w = \begin{cases} \frac{y^a - 1}{ag^{a-1}}, & a \neq 0 \\ (\ln y)g, & a = 0 \end{cases}
$$

- \Box Where *g* is the geometric mean of the responses: $g = (y_1 y_2 \cdots y_n)^{1/n}$
- \Box w has the same units as y.
- **□** *a* can have any real value, positive, negative, or zero.
- ! Plot SSE as a function of *^a* ⇒ optimal *^a*
- \Box Knowledge about the system behavior should always take precedence over statistical considerations.

Washington University in St. Louis CSE567M CSE567M ©2006 Raj Jain

General 2^kr Factorial Design

 \Box Model:

 $y_{ij} = q_0 + q_A x_{Ai} + q_B x_{Bi} + q_{AB} x_{Ai} x_{Bi} + \cdots + e_{ij}$

 \Box

Parameter estimation:
 $q_j = \frac{1}{2^k} \sum_{i=1}^{2^k} S_{ij} \bar{y}_i$

 $S_{ij} = (i, j)$ th entry in the sign table.

Sum of squares:

$$
SSY = \sum_{i=1}^{2^{k}} \sum_{j=1}^{r} y_{ij}^{2}
$$

\n
$$
SS0 = 2^{k}rq_{0}^{2}
$$

\n
$$
SST = SSY - SS0
$$

\n
$$
SSj = 2^{k}rq_{j}^{2}j = 1, 2, ..., 2^{k} - 1
$$

\n
$$
SSE = SST - \sum_{j=1}^{2^{k}-1} SSj
$$

General 2^kr Factorial Design (Cont)

- Percentage of y's variation explained by *j*th effect = \Box $(SSj/SST) \times 100\%$
- \Box Standard deviation of errors:

$$
s_e = \sqrt{\frac{\text{SSE}}{2^k(r-1)}}
$$

 \Box Standard deviation of effects:

$$
s_{q_0} = s_{q_A} = s_{q_B} = s_{q_{AB}} = s_e/\sqrt{2^k r}
$$

 \Box **□** Variance of contrast Σ h_i q_i, where Σ h_i=0 is:

$$
s_{\Sigma h_i q_i}^2 = (s_e^2 \sum h_i^2)/2^k r
$$

General 2^kr Factorial Design (Cont)

□ Standard deviation of the mean of m future responses:

$$
s_{\hat{y}_p}=s_e\left(\frac{1+2^k}{2^kr}+\frac{1}{m}\right)^{1/2}
$$

Q Confidence intervals are calculated using $t_{[1-\alpha/2,2^k(r-1)]}$. **I** Modeling assumptions:

- \triangleright Errors are IID normal variates with zero mean.
- \triangleright Errors have the same variance for all values of the predictors.
- \triangleright Effects and errors are additive.

Visual Tests for 2^kr Designs

- **The scatter plot of errors versus predicted responses** should not have any trend.
- **□** The normal quantile-quantile plot of errors should be linear.
- \Box Spread of y values in all experiments should be comparable.

Q Sum of Squares:

 \Box The errors have $2^3(3-1)$ or 16 degrees of freedom. Standard deviation of errors:

$$
s_e = \sqrt{\frac{\text{SSE}}{2^k(r-1)}} = \sqrt{\frac{164}{16}} = 3.20
$$

 \Box Standard deviation of effects:

$$
s_{q_i} = s_e / \sqrt{(2^3 3)} = 3.20 / \sqrt{24} = 0.654
$$

D % Variation:

 \Box For a single confirmation experiment (m = 1) With $A = B = C = -1$:

$$
\hat{y} = 14
$$

\n
$$
s_{\hat{y}} = s_e \left(\frac{5}{2^k r} + \frac{1}{m} \right)^{1/2}
$$

\n
$$
= 3.2 \left(\frac{5}{24} + 1 \right)^{1/2}
$$

\n
$$
= 3.52
$$

1 90% confidence interval:

$$
14 \pm 1.337 \times 3.52 = 14 \pm 4.70 = (9.30, 18.70)
$$

Case Study 18.1: Garbage collection Case Study 18.1: Garbage collection

Case Study 18.1 (Cont) Case Study 18.1 (Cont)

Case Study 18.1: Conclusions Case Study 18.1: Conclusions

- \Box Most of the variation is explained by factors A (Workload), D (Chunk size), and the interaction A D between the two.
- \Box The variation due to experimental error is small [⇒]Several effects that explain less than 0.05% of

variation (listed as 0.0%) are statistically significant.

Q Only effects A, D, and AD are both practically significant and statistically significant.

- \Box Replications allow estimation of measurement errors \Rightarrow Confidence Intervals of parameters
	- ⇒ Confidence Intervals of predicted responses
- \Box Allocation of variation is proportional to square of effects
- \Box Multiplicative models are appropriate if the factors multiply
- \Box Visual tests for independence normal errors

Exercise 18.1 Exercise 18.1

Table 18.11 lists measured CPU times for two processors on two workloads. Each experiment was repeated three times. Analyze the design.

Table 18.11 2^2 3 Experimental Design Exercise

Homework Homework

Updated Exercise 18.1: The following table lists measured CPU times for two processors on two workloads. Each experiment was repeated three times. Analyze the design. Determine percentage of variation explained, find confidence intervals of the effects, and conduct visual tests.

Table 18 12 2 3 Experimental Design Exercise