2^kr Factorial Designs

Raj Jain
Washington University in Saint Louis
Saint Louis, MO 63130
Jain@cse.wustl.edu

These slides are available on-line at:

http://www.cse.wustl.edu/~jain/cse567-06/

Washington University in St. Louis

CSE567M

- Computation of Effects
- Estimation of Experimental Errors
- Allocation of Variation
- Confidence Intervals for Effects
- Confidence Intervals for Predicted Responses
- Visual Tests for Verifying the assumptions
- Multiplicative Models

Washington University in St. Louis

CSE567M

2^kr Factorial Designs

- \square r replications of 2^k Experiments
 - \Rightarrow 2^kr observations.
 - \Rightarrow Allows estimation of experimental errors.
- □ Model:

$$y = q_0 + q_A x_A + q_B x_B + q_{AB} x_A x_B + e$$

 \Box e = Experimental error

Washington University in St. Louis

CSE567M

Computation of Effects

Simply use means of r measurements

I	A	В	АВ	У	$\overline{\text{Mean } \overline{y}}$
1	-1	-1	1	(15, 18, 12)	15
1	1	-1	-1	(45, 48, 51)	48
1	-1	1	-1	(25, 28, 19)	24
1	1	1	1	(75, 75, 81)	77
164	86	38	20		total
41	21.5	9.5	5		total/4

□ Effects: q_0 = 41, q_A = 21.5, q_B = 9.5, q_{AB} = 5.

Washington University in St. Louis

CSE567M

Estimation of Experimental Errors

■ Estimated Response:

$$\hat{y}_i = q_0 + q_A x_{Ai} + q_B x_{Bi} + q_{AB} x_{Ai} x_{Bi}$$

Experimental Error = Estimated - Measured

$$e_{ij} = y_{ij} - \hat{y}_i$$

$$= y_{ij} - q_0 - q_A x_{Ai} - q_B x_{Bi} - q_{AB} x_{Ai} x_{Bi}$$

$$\sum_{i,j} e_{ij} = 0$$

□ Sum of Squared Errors: $SSE = \sum_{i=1}^{7} \sum_{j=1}^{7} e_{ij}^2$

Washington University in St. Louis

CSE567M

Experimental Errors: Example

Estimated Response:

$$\hat{y}_1 = q_0 - q_A - q_B + q_{AB} = 41 - 21.5 - 9.5 + 5 = 15$$

Experimental errors:

$$e_{11} = y_{11} - \hat{y}_1 = 15 - 15 = 0$$

	Effect			Estimated	Me	Measured					
i	I	A	В	АВ	Response	Re	Responses			Errors	
	41	21.5	9.5	5	\hat{y}_i	$\overline{y_{i1}}$	y_{i2}	y_{i3}	$\overline{e_i}$	e_{i2}	e_{i3}
1	1	-1	-1	1	15	15	18	12	() 3	-3
2	1	1	-1	-1	48	45	48	51	-,	3 0	3
3	1	-1	1	-1	24	25	28	19	-	4	-5
4	1	1	1	1	77	75	75	81	-2	2 -2	4

Washington University in St. Louis

CSE567M

Allocation of Variation

□ Total variation or total sum of squares:

$$SST = \sum_{i,j} (y_{ij} - \bar{y}_{..})^2$$

$$y_{ij} = q_0 + q_A x_{Ai} + q_B x_{Bi} + q_{AB} x_{Ai} x_{Bi} + e_{ij}$$

$$\sum_{i,j} (y_{ij} - \bar{y}_{..})^2 = 2^2 r q_A^2 + 2^2 r q_B^2 + 2^2 r q_{AB}^2 + \sum_{i,j} e_{ij}^2$$

SST = SSA + SSB + SSAB + SSE

Washington University in St. Louis

CSE567M

Derivation

Model:

$$y_{ij} = q_0 + q_A x_{Ai} + q_B x_{Bi} + q_{AB} x_{Ai} x_{Bi} + e_{ij}$$

$$\sum_{i,j} y_{ij} = \sum_{i,j} q_0 + \sum_{i,j} q_A x_{Ai}$$

$$+\sum_{i,j}q_{B}x_{Bi} + \sum_{i,j}q_{AB}x_{Ai}x_{Bi} + \sum_{i,j}e_{ij}$$

Since x's, their products, and all errors add to zero

$$\sum_{i,j} y_{ij} = \sum_{i,j} q_0 = 2^2 r q_0$$

 $\sum_{i,i} y_{ij} = \sum_{i,i} q_0 = 2^2 r q_0$ Mean response: $\bar{y}_{..} = \frac{1}{2^2 r} \sum_{i,i} y_{ij} = q_0$

Washington University in St. Louis

CSE567M

Derivation (Cont)

Squaring both sides of the model and ignoring cross product terms:

$$\sum_{i,j} y_{ij}^2 = \sum_{i,j} q_0^2 + \sum_{i,j} q_A^2 x_{Ai}^2 + \sum_{i,j} q_B^2 x_{Bi}^2 + \sum_{i,j} q_{AB}^2 x_{Ai}^2 x_{Bi}^2 + \sum_{i,j} e_{ij}^2$$

$$SSY = SS0 + SSA + SSB + SSAB + SSE$$

Derivation (Cont)

Total variation:

$$SST = \sum_{i,j} (y_{ij} - \bar{y}_{..})^2$$

$$= \sum_{i,j} y_{ij}^2 - \sum_{i,j} \bar{y}_{..}^2$$

$$= SSY - SSO$$

$$= SSA + SSB + SSAB + SSE$$

One way to compute SSE:

$$SSE = SSY - 2^2 r(q_0^2 + q_A^2 + q_b^2 + q_{AB}^2)$$

Washington University in St. Louis

CSE567M

Example 18.3: Memory-Cache Study

SSY =
$$15^2 + 18^2 + 12^2 + 45^2 + \dots + 75^2 + 75^2 + 81^2$$

= 27204
SSO = $2^2rq_0^2 = 12 \times 41^2 = 20172$
SSA = $2^2rq_A^2 = 12 \times (21.5)^2 = 5547$
SSB = $2^2rq_B^2 = 12 \times (9.5)^2 = 1083$
SSAB = $2^2rq_{AB}^2 = 12 \times 5^2 = 300$
SSE = $27204 - 2^2 \times 3(41^2 + 21.5^2 + 9.5^2 + 5^2)$
= 102
SST = SSY - SSO
= $27204 - 20172 = 7032$

18-11

©2006 Rai Jain

Washington University in St. Louis

Example 18.3 (Cont)

$$SSA + SSB + SSAB + SSE$$

$$= 5547 + 1083 + 300 + 102$$

$$= 7032 = SST$$

Factor A explains 5547/7032 or 78.88%

Factor B explains 15.40%

Interaction AB explains 4.27%

1.45% is unexplained and is attributed to errors.

Washington University in St. Louis

CSE567M

Confidence Intervals For Effects

- Effects are random variables.
- □ Errors $\sim N(0,\sigma_e) \Rightarrow y \sim N(\bar{y}_{\cdot \cdot}, \sigma_e)$

$$q_0 = \frac{1}{2^2 r} \sum_{i,j} y_{ij}$$

□ q_0 = Linear combination of normal variates ⇒ q_0 is normal with variance $\sigma_e^2/(2^2r)$

Variance of errors:

$$s_e^2 = \frac{1}{2^2(r-1)} \sum_{ij} e_{ij}^2 = \frac{\text{SSE}}{2^2(r-1)} \triangle \text{MSE}$$

□ Denominator = $2^2(r-1)$ = # of independent terms in SSE

 \Rightarrow SSE has $2^2(r-1)$ degrees of freedom.

Estimated variance of q_0 : $s_{q_0}^2 = s_e^2/(2^2r)$

Washington University in St. Louis

CSE567M

Confidence Intervals For Effects (Cont)

□ Similarly,

$$s_{q_A} = s_{q_B} = s_{q_{AB}} = \frac{s_e}{\sqrt{2^2 r}}$$

□ Confidence intervals (CI) for the effects:

$$q_i \mp t_{[1-\alpha/2;2^2(r-1)]}s_{q_i}$$

 \square CI does not include a zero \Rightarrow significant

Example 18.4

□ For Memory-cache study: Standard deviation of errors:

$$s_e = \sqrt{\frac{\text{SSE}}{2^2(r-1)}} = \sqrt{\frac{102}{8}} = \sqrt{12.75} = 3.57$$

Standard deviation of effects:

$$s_{q_i} = s_e / \sqrt{(2^2 r)} = 3.57 / \sqrt{12} = 1.03$$

- □ For 90% Confidence: $t_{[0.95,8]}$ = 1.86
- □ Confidence intervals: $q_i \mp (1.86)(1.03) = q_i \mp 1.92$

$$q_0 = (39.08, 42.91)$$

$$q_A = (19.58, 23.41)$$

$$q_B = (7.58, 11.41)$$

$$q_{AB} = (3.08, 6.91)$$

□ No zero crossing ⇒ All effects are significant.

Washington University in St. Louis

CSE 567M

Confidence Intervals for Contrasts

- □ Contrast $\underline{\mathbf{M}}$ Linear combination with Σ coefficients = 0

□ For $100(1-\alpha)$ % confidence interval, use $t_{[1-\alpha/2; 2^2(r-1)]}$.

Washington University in St. Louis

CSE567M

Example 18.5

Memory-cache study

$$u = q_A + q_B - 2q_{AB}$$

Coefficients= 0, 1, 1, and $-2 \Rightarrow$ Contrast

Mean
$$\bar{u} = 21.5 + 9.5 - 2 \times 5 = 11$$

Variance
$$s_u^2 = \frac{s_e^2 \times 6}{2^2 \times 3} = 6.375$$

Standard deviation $s_u = \sqrt{6.375} = 2.52$

$$t_{[0.95;8]} = 1.86$$

90% Confidence interval for u:

$$\bar{u} \mp ts_u = 11 \mp 1.86 \times 2.52 = (6.31, 15.69)$$

Washington University in St. Louis

CSE567M

Conf. Interval For Predicted Responses

 $lue{}$ Mean response \hat{y} :

$$\hat{y} = q_0 + q_A x_A + q_B x_B + q_{AB} x_A x_B$$

□ The standard deviation of the mean of m responses:

$$s_{\hat{y}_m} = s_e \left(\frac{1}{n_{\text{eff}}} + \frac{1}{m} \right)^{1/2}$$

$$n_{\text{eff}} = \text{Effective deg of freedom}$$

$$= \frac{\text{Total number of runs}}{1 + \text{Sum of DFs of params used in } \hat{y}}$$

$$= \frac{2^2 r}{5}$$

Washington University in St. Louis

CSE567M

Conf. Interval for Predicted Responses (Cont)

 $100(1-\alpha)\%$ confidence interval:

$$\hat{y} \mp t_{[1-\alpha/2;2^2(r-1)]} s_{\hat{y}_m}$$

- □ A single run (m=1): $s_{\hat{y}_1} = s_e \left(\frac{5}{2^2 r} + 1\right)^{1/2}$
- □ Population mean (m=∞): $s_{\hat{y}} = s_e \left(\frac{5}{2^2 r}\right)^{1/2}$

Washington University in St. Louis

CSE567M

Example 18.6: Memory-cache Study

- A single confirmation experiment:

$$\hat{y}_1 = q_0 - q_A - q_B + q_{AB}$$

= $41 - 21.5 - 9.5 + 5 = 15$

■ Standard deviation of the prediction:

$$s_{\hat{y}_1} = s_e \left(\frac{5}{2^2 r} + 1\right)^{1/2} = 3.57 \sqrt{\frac{5}{12} + 1} = 4.25$$

Using $t_{[0.95;8]} = 1.86$, the 90% confidence interval is:

$$15 \mp 1.86 \times 4.25 = (8.09, 22.91)$$

Washington University in St. Louis

CSE567M

Example 18.6 (Cont)

■ Mean response for 5 experiments in future:

$$s_{\hat{y}_1} = s_e \left(\frac{5}{2^2 r} + \frac{1}{m}\right)^{1/2}$$

$$= 3.57 \sqrt{\frac{5}{12} + \frac{1}{5}} = 2.20$$

□ The 90% confidence interval is:

$$15 \mp 1.86 \times 2.20 = (10.91, 19.09)$$

Example 18.6 (Cont)

Mean response for a large number of experiments in future:

$$s_{\hat{y}} = s_e \left(\frac{5}{2^2 r}\right)^{1/2} = 3.57 \sqrt{\frac{5}{12}} = 2.30$$

□ The 90% confidence interval is:

$$15 \mp 1.86 \times 2.30 = (10.72, 19.28)$$

□ Current mean response: Not for future. Use contrasts formula.

$$s_{\hat{y}} = \sqrt{\frac{s_e \sum h_i^2}{2^2 r}} = \sqrt{\frac{12.75 \times 4}{12}} = 2.06$$

■ 90% confidence interval:

$$15 \mp 1.86 \times 2.06 = (11.17, 18.83)$$

Washington University in St. Louis

CSE567M

Assumptions

- 1. Errors are statistically independent.
- 2. Errors are additive.
- 3. Errors are normally distributed.
- 4. Errors have a constant standard deviation σ_e .
- 5. Effects of factors are additive
 - ⇒ observations are independent and normally distributed with constant variance.

Washington University in St. Louis

CSE567M

Visual Tests

1. Independent Errors:

- $oldsymbol{\square}$ Scatter plot of residuals versus the predicted response \hat{y}_i
- Magnitude of residuals < Magnitude of responses/10⇒ Ignore trends
- ☐ Plot the residuals as a function of the experiment number
- \square Trend up or down \Rightarrow other factors or side effects

2. Normally distributed errors:

Normal quantile-quantile plot of errors

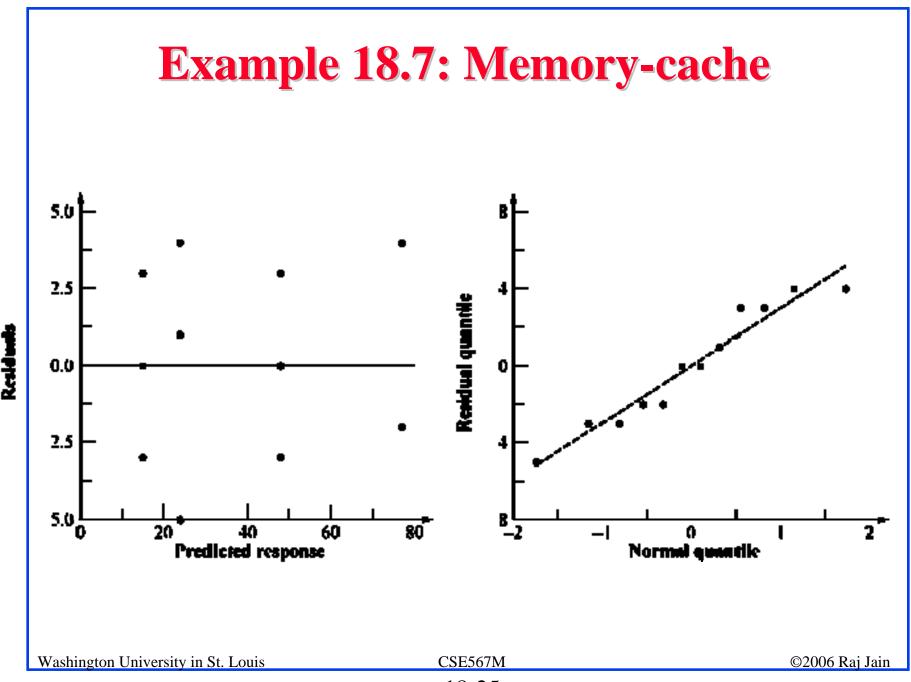
3. Constant Standard Deviation of Errors:

Scatter plot of y for various levels of the factor Spread at one level significantly different than that at other

⇒ Need transformation

Washington University in St. Louis

CSE567M



Multiplicative Models

Additive model:

$$y_{ij} = q_0 + q_A x_A + q_B x_B + q_{AB} x_A x_B + e_{ij}$$

- Not valid if effects do not add.E.g., execution time of workloads.
 - *i*th processor speed= v_i instructions/second.
 - jth workload Size= w_i instructions
- The two effects multiply. Logarithm \Rightarrow additive model: Execution Time $y_{ij} = v_i \times w_j$ $\log(y_{ij}) = \log(v_i) + \log(w_i)$
- □ Correct Model:

$$y'_{ij} = q_0 + q_A x_A + q_B x_B + q_{AB} x_A x_B + e_{ij}$$

Where, $y'_{ij} = \log(y_{ij})$

Washington University in St. Louis

CSE567M

Multiplicative Model (Cont)

□ Taking an antilog of effects:

$$u_A = 10^{qA}$$
, $u_B = 10^{qB}$, and $u_{AB} = 10^{qAB}$

- \square u_A = ratio of MIPS rating of the two processors
- u_B = ratio of the size of the two workloads.
- \square Antilog of additive mean $q_0 \Rightarrow$ geometric mean

$$\dot{y} = 10^{q_0} = (y_1 y_2 \cdots y_n)^{1/n} \quad n = 2^2 r$$

Example 18.8: Execution Times

Analysis Using an Additive Model

		· ·			
I	A	В	AB	У	Mean \bar{y}
1	-1	-1	1	(85.10, 79.50, 147.90)	104.170
1	1	-1	-1	(0.891, 1.047, 1.072)	1.003
1	-1	1	-1	(0.955, 0.933, 1.122)	1.003
1	1	1	1	(0.0148, 0.0126, 0.0118)	0.013
$\overline{106.19}$	-104.15	-104.15	102.17	total	
26.55	-26.04	-26.04	25.54	total/4	

Additive model is not valid because:

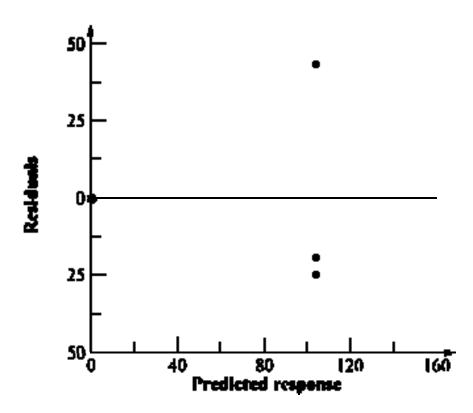
- □ Physical consideration ⇒ effects of workload and processors do not add. They multiply.
- □ Large range for y. $y_{max}/y_{min} = 147.90/0.0118$ or 12,534 \Rightarrow log transformation
- □ Taking an arithmetic mean of 114.17 and 0.013 is inappropriate.

Washington University in St. Louis

CSE567M

Example 18.8 (Cont)

□ The residuals are not small as compared to the response.



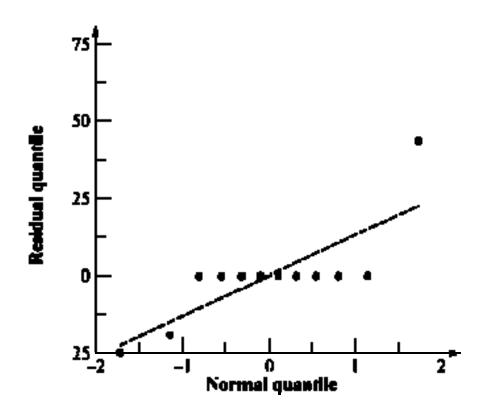
- □ The spread of residuals is large at larger value of the response.
 - ⇒ log transformation

Washington University in St. Louis

CSE567M

Example 18.8 (Cont)

□ Residual distribution has a longer tail than normal



Washington University in St. Louis

CSE567M

Analysis Using Multiplicative Model

Data After Log Transformation

	I	A	В	AB	y	$\overline{\text{Mean } \overline{y}}$
_	1	-1	-1	1	(1.93, 1.90, 2.17)	2.00
	1	1	-1	-1	(-0.05, 0.02, 0.03)	0.00
	1	-1	1	-1	(-0.02, -0.03, 0.05)	0.00
	1	1	1	1	(-1.83, -1.90, -1.93)	-1.89
_	0.11	-3.89	-3.89	0.11	total	
_	0.03	-0.97	-0.97	0.03	total/4	

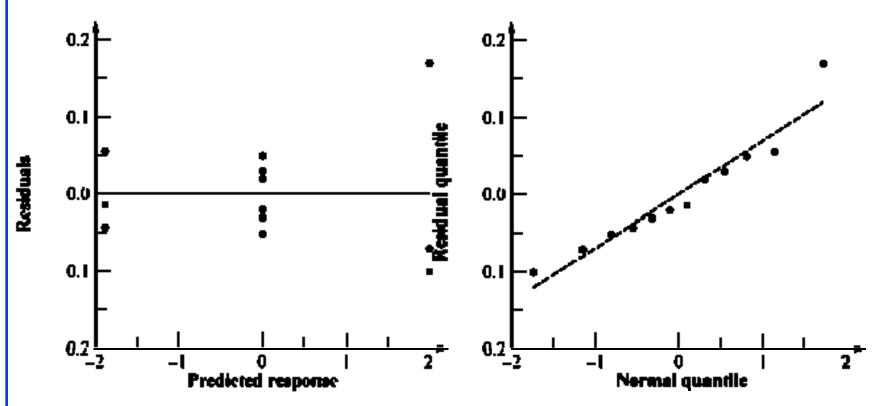
Variation Explained by the Two Models

		Additiv	re Model	Multiplicative Model			
Factor	Effect	% Var.	Conf. Interval	Effect	% Var.	Conf. Interval	
I	26.55		(16.35, 36.74)	0.03		$(-0.02, 0.07)\dagger$	
A	-26.04	30.1%	(-36.23, -15.84)	-0.97	49.9%	(-1.02, -0.93)	
В	-26.04	30.1%	(-36.23, -15.84)	-0.97	49.9%	(-1.02, -0.93)	
AB	25.54	29.0%	(15.35, 35.74)	0.03	0.0%	$(-0.02, 0.07)\dagger$	
e		10.8%			0.2%		

 $\dagger \Rightarrow \text{Not Significant}$

- □ With multiplicative model:
 - > Interaction is almost zero.
 - > Unexplained variation is only 0.2%

Visual Tests



□ Conclusion: Multiplicative model is better than the additive model.

Washington University in St. Louis

CSE567M

Interpretation of Results

$$\log(y) = q_0 + q_A x_A + q_B x_B + q_{AB} x_A x_B + e$$

$$\Rightarrow y = 10^{q_0} 10^{q_A x_A} 10^{q_B x_B} 10^{q_{AB} x_A x_B} 10^e$$

$$= 10^{0.03} 10^{-0.97 x_A} 10^{-0.97 x_B} 10^{0.03 x_A x_B} 10^e$$

$$= 1.07 \times 0.107^{x_A} \times 0.107^{x_B} \times 1.07^{x_A x_B} 10^e$$

- The time for an average processor on an average benchmark is 1.07.
- \square The time on processor A_1 is nine times (0.107⁻¹) that on an average processor. The time on A_2 is one ninth (0.107^1) of that on an average processor.
- \square MIPS rate for A_2 is 81 times that of A_1 .
- Benchmark B_1 executes 81 times more instructions than B_2 .
- □ The interaction is negligible.
- ⇒ Results apply to all benchmarks and processors. Washington University in St. Louis CSE567M

Transformation Considerations

- $y_{\text{max}}/y_{\text{min}}$ small \Rightarrow Multiplicative model results similar to additive model.
- Many other transformations possible.
- Box-Cox family of transformations:

$$w = \begin{cases} \frac{y^a - 1}{ag^{a-1}}, & a \neq 0\\ (\ln y)g, & a = 0 \end{cases}$$

 \square Where g is the geometric mean of the responses:

$$g = (y_1 y_2 \cdots y_n)^{1/n}$$

- w has the same units as y.
- \square a can have any real value, positive, negative, or zero.
- \square Plot SSE as a function of $a \Rightarrow$ optimal a
- Knowledge about the system behavior should always take precedence over statistical considerations.

Washington University in St. Louis

CSE567M

General 2kr Factorial Design

□ Model:

$$y_{ij} = q_0 + q_A x_{Ai} + q_B x_{Bi} + q_{AB} x_{Ai} x_{Bi} + \dots + e_{ij}$$

Parameter estimation:

$$q_j = \frac{1}{2^k} \sum_{i=1}^{2^k} S_{ij} \bar{y}_i$$

 $S_{ij} = (i,j)$ th entry in the sign table.

■ Sum of squares:

$$SSY = \sum_{i=1}^{2^{k}} \sum_{j=1}^{r} y_{ij}^{2}$$

$$SS0 = 2^{k} r q_{0}^{2}$$

$$SST = SSY - SS0$$

$$SSj = 2^{k} r q_{j}^{2} j = 1, 2, ..., 2^{k} - 1$$

$$SSE = SST - \sum_{i=1}^{2^{k} - 1} SSj$$

Washington University in St. Louis

CSE567M

General 2^kr Factorial Design (Cont)

□ Percentage of y's variation explained by *j*th effect =

$$(SSj/SST) \times 100\%$$

Standard deviation of errors:

$$s_e = \sqrt{\frac{\text{SSE}}{2^k(r-1)}}$$

Standard deviation of effects:

$$s_{q_0} = s_{q_A} = s_{q_B} = s_{q_{AB}} = s_e / \sqrt{2^k r}$$

□ Variance of contrast $\sum h_i q_i$, where $\sum h_i = 0$ is:

$$s_{\sum h_i q_i}^2 = (s_e^2 \sum h_i^2)/2^k r$$

Washington University in St. Louis

CSE567M

General 2^kr Factorial Design (Cont)

□ Standard deviation of the mean of m future responses:

$$s_{\hat{y}_p} = s_e \left(\frac{1 + 2^k}{2^k r} + \frac{1}{m} \right)^{1/2}$$

- \Box Confidence intervals are calculated using $t_{[1-\alpha/2;2^k(r-1)]}$.
- Modeling assumptions:
 - > Errors are IID normal variates with zero mean.
 - > Errors have the same variance for all values of the predictors.
 - > Effects and errors are additive.

Visual Tests for 2^kr Designs

- □ The scatter plot of errors versus predicted responses should not have any trend.
- □ The normal quantile-quantile plot of errors should be linear.
- □ Spread of y values in all experiments should be comparable.

Washington University in St. Louis

CSE567M

Example 18.9: A 2³3 Design

	A	В	С	АВ	A C	ВС	АВС	У	$\overline{\text{Mean } \bar{\mathbf{y}}}$
1	-1	-1	-1	1	1	1	-1	(14, 16, 12)	14
1	1	-1	-1	-1	-1	1	1	(22, 18, 20)	20
1	-1	1	-1	-1	1	-1	1	(11, 15, 19)	15
1	1	1	-1	1	-1	-1	-1	(34, 30, 35)	33
1	-1	-1	1	1	-1	-1	1	(46, 42, 44)	44
1	1	-1	1	-1	1	-1	-1	(58, 62, 60)	60
1	-1	1	1	-1	-1	1	-1	(50, 55, 54)	53
1	1	1	1	1	1	1	1	(86, 80, 74)	80
319	67	43	155	23	19	15	-1	total	
39.87	8.375	5.375	19.37	2.875	2.375	1.875	-0.125	total/8	

Washington University in St. Louis

CSE567M

□ Sum of Squares:

Compo-	Sum of	Percent
nent	Squares	Variation
y	4.9E4	
$ar{y}$	3.8E4	
у- $ar{y}$	1.1E4	100.00%
\mathbf{A}	1683.0	14.06%
В	693.3	5.79%
\mathbf{C}	9009.0	75.27%
AB	198.3	1.66%
AC	135.4	1.13%
BC	84.4	0.70%
ABC	0.4	0.00%
Errors	164.0	1.37%

Washington University in St. Louis CSE567M

□ The errors have $2^3(3-1)$ or 16 degrees of freedom. Standard deviation of errors:

$$s_e = \sqrt{\frac{\text{SSE}}{2^k(r-1)}} = \sqrt{\frac{164}{16}} = 3.20$$

Standard deviation of effects:

$$s_{q_i} = s_e / \sqrt{(2^3 3)} = 3.20 / \sqrt{24} = 0.654$$

□ % Variation:

Washington University in St. Louis

Compo-	Sum of	Percent
nent	Squares	Variation
y	4.9E4	
$ar{y}$	3.8E4	
y- $ar{y}$	1.1E4	100.00%
\mathbf{A}	1683.0	14.06%
В	693.3	5.79%
\mathbf{C}	9009.0	75.27%
AB	198.3	1.66%
AC	135.4	1.13%
BC	84.4	0.70%
ABC	0.4	0.00%
Errors	164.0	1.37%

CSE567M

- \Box $t_{[0.95,16]}=1.337$
- □ 90% confidence intervals for parameters: $q_i \mp (1.337)(0.654)$ = $q_i \mp 0.874$

$$q_0 = (39.00, 40.74)$$

$$q_A = (7.50, 9.25)$$

$$q_B = (4.50, 6.25)$$

$$q_C = (18.50, 20.24)$$

$$q_{AB} = (2.00, 3.75)$$

$$q_{AC} = (1.50, 3.25)$$

$$q_{BC} = (1.00, 2.75)$$

$$q_{ABC} = (-1.00, 0.75)$$

 \square All effects except q_{ABC} are significant.

Washington University in St. Louis

CSE567M

 \Box For a single confirmation experiment (m = 1)

With
$$A = B = C = -1$$
:

$$\hat{y} = 14$$

$$s_{\hat{y}} = s_e \left(\frac{5}{2^k r} + \frac{1}{m} \right)^{1/2}$$

$$= 3.2 \left(\frac{5}{24} + 1 \right)^{1/2}$$

$$= 3.52$$

■ 90% confidence interval:

$$14 \mp 1.337 \times 3.52 = 14 \mp 4.70 = (9.30, 18.70)$$

Washington University in St. Louis

CSE567M

Case Study 18.1: Garbage collection

Factors and Levels

Variable	Factor	-1	1
A	Workload	Single Task	Several parallel tasks
В	Compiler	Simple	Deallocating
$\mid C \mid$	Limbo List	Enabled	Disabled
D	Chunk Size	4K bytes	16K bytes

Case Study 18.1 (Cont)

I	A	В	С	D	У	Mean \bar{y}
1	-1	-1	-1	-1	(97, 97, 97)	97.00
1	1	-1	-1	-1	(31, 31, 32)	31.33
1	-1	1	-1	-1	(97, 97, 97)	97.00
1	1	1	-1	-1	(31, 32, 31)	31.33
1	-1	-1	1	-1	(97, 97, 97)	97.00
1	1	-1	1	-1	(32, 32, 31)	31.67
1	-1	1	1	-1	(97, 97, 97)	97.00
1	1	1	1	-1	(32, 32, 32)	32.00
1	-1	-1	-1	1	(407, 407, 407)	407.00
1	1	-1	-1	1	(135, 136, 135)	135.33
1	-1	1	-1	1	(409, 409, 409)	409.00
1	1	1	-1	1	(135, 135, 136)	135.33
1	-1	-1	1	1	(407, 407, 407)	407.00
1	1	-1	1	1	(139, 140, 139)	139.33
1	-1	1	1	1	(409, 409, 409)	409.00
1	1	1	1	1	(139, 139, 140)	139.33
2695.67	-1344.33	4.33	9.00	1667.00		total
168.48	-84.02	0.27	0.56	104.19		total/8

Washington University in St. Louis CSE567M ©2006 Raj Jain

Case Study 18.1 (Cont)

Factor	Effect	% Variation	Conf. Interval			
I	168.48	138.1%	(168.386, 168.573)			
A	-84.02	34.4%	(-84.114, -83.927)			
В	0.27	0.0%	(0.177, 0.364)			
\mathbf{C}	0.56	0.0%	(0.469, 0.656)			
D	104.19	52.8%	(104.094, 104.281)			
AB	-0.23	0.0%	(-0.323, -0.136)			
AC	0.56	0.0%	(0.469, 0.656)			
AD	-51.31	12.8%	(-51.406, -51.219)			
BC	0.02	0.0%	$(-0.073, 0.114)\dagger$			
BD	0.23	0.0%	(0.136, 0.323)			
CD	0.44	0.0%	(0.344, 0.531)			
ABC	0.02	0.0%	$(-0.073, 0.114)\dagger$			
ABD	-0.27	0.0%	(-0.364, -0.177)			
ACD	0.44	0.0%	(0.344, 0.531)			
BCD	-0.02	0.0%	$(-0.114, 0.073)\dagger$			
ABCD	-0.02	0.0%	$(-0.114, 0.073)\dagger$			
$\uparrow \Rightarrow \text{Not Significant}$						

Washington University in St. Louis

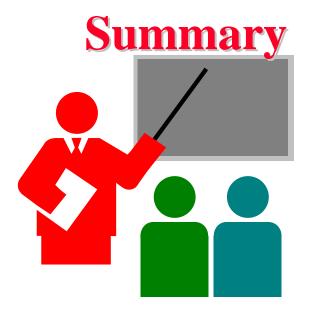
CSE567M

Case Study 18.1: Conclusions

- Most of the variation is explained by factors A (Workload), D (Chunk size), and the interaction A D between the two.
- □ The variation due to experimental error is small
 ⇒Several effects that explain less than 0.05% of
 variation (listed as 0.0%) are statistically significant.
- □ Only effects A, D, and AD are both practically significant and statistically significant.

Washington University in St. Louis

CSE567M



- Replications allow estimation of measurement errors
 - ⇒ Confidence Intervals of parameters
 - ⇒ Confidence Intervals of predicted responses
- Allocation of variation is proportional to square of effects
- Multiplicative models are appropriate if the factors multiply
- □ Visual tests for independence normal errors

Washington University in St. Louis

CSE567M

Exercise 18.1

Table 18.11 lists measured CPU times for two processors on two workloads. Each experiment was repeated three times. Analyze the design.

Table 18.11 2² 3 Experimental Design Exercise

Workload	Processor		
	A	В	
I	(41.16, 39.02, 42.56)	$ \hline (63.17, 59.25, 64.23) $	
J	(51.50, 52.50, 50.50)	(48.08, 48.98, 47.10)	

Homework

Updated Exercise 18.1: The following table lists measured CPU times for two processors on two workloads. Each experiment was repeated three times. Analyze the design. Determine percentage of variation explained, find confidence intervals of the effects, and conduct visual tests.

Table 18.12 2² 3 Experimental Design Exercise

Workload	Processor		
	A	В	
I	(41.16, 39.02, 42.56)	$\overline{(65.17, 69.25, 64.23)}$	
J	(53.50, 55.50, 50.50)	(50.08, 48.98, 47.10)	

Washington University in St. Louis

CSE567M