Comparing Systems Using Sample Data

Raj Jain
Washington University in Saint Louis
Saint Louis, MO 63130
Jain@cse.wustl.edu

These slides are available on-line at:

http://www.cse.wustl.edu/~jain/cse567-06/

Washington University in St. Louis

CSE567M

- Sample Versus Population
- □ Confidence Interval for The Mean
- Approximate Visual Test
- One Sided Confidence Intervals
- □ Confidence Intervals for Proportions
- □ Sample Size for Determining Mean and proportions

Washington University in St. Louis

CSE567M

Sample

- □ Old French word `essample' ⇒ `sample' and `example'
- One example ≠ theory
- One sample ≠ Definite statement

Washington University in St. Louis

CSE567M

Sample Versus Population

- \Box Generate several million random numbers with mean μ and standard deviation σ
 - Draw a sample of n observations

$$\bar{x} \neq \mu$$

- □ Sample mean ≠ population mean
- □ Parameters: population characteristics
 - = Unknown = Greek
- □ Statistics: Sample estimates = Random = English

Confidence Interval for The Mean

- \square k samples \Rightarrow k Sample means
 - \Rightarrow Can't get a single estimate of μ
 - \Rightarrow Use bounds c_{1} and c_{2}:

Probability
$$\{c_1 \le \mu \le c_2\} = 1-\alpha$$

- \square Confidence interval: $[(c_1, c_2)]$
- Significance level: α
- \Box Confidence level: $100(1-\alpha)$
- □ Confidence coefficient: 1

Washington University in St. Louis

Determining Confidence Interval

- □ Use 5-percentile and 95-percentile of the sample means to get 90% Confidence interval \Rightarrow Need many samples.
- Central limit theorem: Sample mean of independent and identically distributed observations:

$$\bar{x} \sim N(\mu, \sigma/\sqrt{n})$$

Where μ = population mean, σ = population standard deviation

Standard Error: Standard deviation of the sample mean

$$= \sigma/\sqrt{n}$$

□ 100(1-a)% confidence interval for μ :

$$(\bar{x} - z_{1-\alpha/2} s / \sqrt{n}, \bar{x} + z_{1-\alpha/2} s / \sqrt{n})$$

$$z_{1-\alpha/2} = (1-\alpha/2)$$
-quantile of N(0,1)

Washington University in St. Louis

CSE567M

- $\bar{x} = 3.90$, s = 0.95 and n = 32
- □ A 90% confidence interval for the mean $= 3.90 \mp (1.645)(0.95)/\sqrt{32} = (3.62, 4.17)$
- We can state with 90% confidence that the population mean is between 3.62 and 4.17 The chance of error in this statement is 10%.

A 95% confidence interval for the mean = $3.90 \mp (1.960)(0.95)/\sqrt{32}$ = (3.57, 4.23)

A 99% confidence interval for the mean = $3.90 \mp (2.576)(0.95)/\sqrt{32}$ = (3.46, 4.33)

Washington University in St. Louis

CSE567M

Confidence Interval: Meaning

☐ If we take 100 samples and construct confidence interval for each sample, the interval would include the population mean in 90 cases.

Washington University in St. Louis

CSE567M

Confidence Interval for Small Samples

□ $100(1-\alpha)$ % confidence interval for for n < 30:

$$(\bar{x} - t_{[1-\alpha/2;n-1]}s/\sqrt{n}, \bar{x} + t_{[1-\alpha/2;n-1]}s/\sqrt{n})$$

□ $t_{[1-\alpha/2; n-1]} = (1-\alpha/2)$ -quantile of a t-variate with n-1 degrees of freedom

$$x \sim N(\mu, \sigma^2)$$

$$\Rightarrow (\bar{x} - \mu)/(\sigma/\sqrt{n}) \sim N(0, 1)$$

$$(n - 1)s^2/\sigma^2 \sim \chi^2(n - 1)$$

$$(\bar{x} - \mu)/\sqrt{s^2/n} \sim t(n - 1)$$

Washington University in St. Louis

CSE567M

- □ Sample: -0.04, -0.19, 0.14, -0.09, -0.14, 0.19, 0.04, and 0.09.
- \square Mean = 0, Sample standard deviation = 0.138.
- \square For 90% interval: $t_{[0.95;7]} = 1.895$
- □ Confidence interval for the mean

$$0 \mp 1.895 \times 0.138 = 0 \mp 0.262 = (-0.262, 0.262)$$

Washington University in St. Louis

CSE567M

Testing For A Zero Mean

- □ Difference in processor times: {1.5, 2.6, -1.8, 1.3, -0.5, 1.7, 2.4}.
- Question: Can we say with 99% confidence that one is superior to the other?

Sample size = n = 7

Mean = 7.20/7 = 1.03

Sample variance = (22.84 - 7.20*7.20/7)/6 = 2.57

Sample standard deviation $= \sqrt{2.57} = 1.60$

Confidence interval = $1.03 \mp t * 1.60/\sqrt{7} = 1.03 \mp 0.6t$

$$100(1-\alpha) = 99, \ \alpha = 0.01, \ 1-\alpha/2 = 0.995$$

$$t_{[0.995; 6]} = 3.707$$

■ 99% confidence interval = (-1.21, 3.27)

Washington University in St. Louis

CSE567M

Example 13.3 (Cont)

- □ Opposite signs ⇒ we cannot say with 99% confidence that the mean difference is significantly different from zero.
- □ Answer: They are same.
- □ Answer: The difference is zero.

- □ Difference in processor times: {1.5, 2.6, -1.8, 1.3, -0.5, 1.7, 2.4}.
- □ Question: Is the difference 1?
- □ 99% Confidence interval = (-1.21, 3.27)
- ☐ Yes: The difference is 1

Washington University in St. Louis

CSE567M

Paired vs. Unpaired Comparisons

- Paired: one-to-one correspondence between the ith test of system A and the ith test on system B
- □ Example: Performance on ith workload
- ☐ Use confidence interval of the difference
- □ **Unpaired**: No correspondence
- □ Example: *n* people on System A, *n* on System B
 - ⇒Need more sophisticated method

- □ Performance: {(5.4, 19.1), (16.6, 3.5), (0.6, 3.4), (1.4, 2.5), (0.6, 3.6), (7.3, 1.7)}. Is one system better?
- □ Differences: {-13.7, 13.1, -2.8, -1.1, -3.0, 5.6}.

Sample mean = -0.32

Sample variance = 81.62

Sample standard deviation = 9.03

Confidence interval for the mean $= -0.32 \mp t\sqrt{(81.62/6)}$

$$=-0.32 \mp t(3.69)$$

$$t_{[0.95,5]} = 2.015$$

90% confidence interval = $-0.32 \mp (2.015)(3.69)$

$$=(-7.75, 7.11)$$

■ Answer: No. They are not different.

Washington University in St. Louis

CSE567M

Unpaired Observations

Compute the sample means:

$$\bar{x}_a = \frac{1}{n_a} \sum_{i=1}^{n_a} x_{ia}$$

$$\bar{x}_b = \frac{1}{n_b} \sum_{i=1}^{n_b} x_{ib}$$

Compute the sample standard deviations:

$$s_a = \left\{ \frac{\left(\sum_{i=1}^{n_a} x_{ia}^2\right) - n_a \bar{x}_a^2}{n_a - 1} \right\}^{\frac{1}{2}}$$

$$s_b = \left\{ \frac{\left(\sum_{i=1}^{n_b} x_{ib}^2\right) - n_b \bar{x}_b^2}{n_b - 1} \right\}^{\frac{1}{2}}$$

Washington University in St. Louis

Unpaired Observations (Cont)

- \Box Compute the mean difference: $(\bar{x}_a \bar{x}_b)$
- □ Compute the standard deviation of the mean difference:

$$s = \sqrt{\left(\frac{s_a^2}{n_a} + \frac{s_b^2}{n_b}\right)}$$

□ Compute the effective number of degrees of freedom:

$$\nu = \frac{\left(\frac{s_a^2}{n_a} + \frac{s_b^2}{n_b}\right)^2}{\frac{1}{n_a + 1} \left(\frac{s_a^2}{n_a}\right)^2 + \frac{1}{n_b + 1} \left(\frac{s_b^2}{n_b}\right)^2} - 2$$

□ Compute the confidence interval for the mean difference:

$$(\bar{x}_a - \bar{x}_b) \mp t_{[1-\alpha/2;\nu]}s$$

Washington University in St. Louis

CSE567M

- □ Times on System A: {5.36, 16.57, 0.62, 1.41, 0.64, 7.26} Times on system B: {19.12, 3.52, 3.38, 2.50, 3.60, 1.74}
- □ Question: Are the two systems significantly different?
- □ For system A:

Mean
$$\bar{x}_a = 5.31$$

Variance $s_a^2 = 37.92$
 $n_a = 6$

□ For System B:

Mean
$$\bar{x}_b = 5.64$$

Variance $s_b^2 = 44.11$
 $n_b = 6$

Washington University in St. Louis

CSE567M

Example 13.6 (Cont)

Mean difference $\bar{x}_a - \bar{x}_b = -0.33$ Standard deviation of the mean difference = 3.698 Effective number of degrees of freedom f = 11.921The 0.95-quantile of a t-variate with 12 degrees of freedom = 1.71

The 90% confidence interval for the difference = (-6.92, 6.26)

- □ The confidence interval includes zero
 - \Rightarrow the two systems are not different.

Washington University in St. Louis

CSE567M

- □ Times on System A: {5.36, 16.57, 0.62, 1.41, 0.64, 7.26}
 Times on system B: {19.12, 3.52, 3.38, 2.50, 3.60, 1.74}
- t_[0.95,5] = 2.015 The 90% confidence interval for the mean of A = 5.31 \mp (2.015) $\sqrt{(37.92/6)}$
 - =(0.24, 10.38)
- □ The 90% confidence interval for the mean of B = 5.64 ∓ $(2.015) \sqrt{(44.11/6)}$ = (0.18, 11.10)
- □ Confidence intervals overlap and the mean of one falls in the confidence interval for the other.
 - \Rightarrow Two systems are not different at this level of confidence.

Washington University in St. Louis

CSE567M

What Confidence Level To Use?

- □ Need not always be 90% or 95% or 99%
- Base on the loss that you would sustain if the parameter is outside the range and the gain you would have if the parameter is inside the range.
- \square Low loss \Rightarrow Low confidence level is fine
 - E.g., lottery of 5 Million with probability 10⁻⁷
- □ 90% confidence) buy nine million tickets
- □ 0.01% confidence level is fine.
- □ 50% confidence level may or may not be too low
- □ 99% confidence level may or may not be too high

Washington University in St. Louis

CSE567M

Hypothesis Testing vs. Confidence Intervals

- Confidence interval provides more information
- \square Hypothesis test = yes-no decision
- Confidence interval also provides possible range
- \square Narrow confidence interval \Rightarrow high degree of precision
- \square Wide confidence interval \Rightarrow Low precision
- Example: $(-100,100) \Rightarrow \text{No difference}$ $(-1,1) \Rightarrow \text{No difference}$
- Confidence intervals tell us not only what to say but also how loudly to say it
- CI is easier to explain to decision makers
- □ CI is more useful.

E.g., parameter range (100, 200)

vs. Probability of (parameter = 110) = 3%

Washington University in St. Louis

CSE567M

One Sided Confidence Intervals

- Two side intervals: 90\% Confidence
 - \Rightarrow P(Difference > upper limit) = 5%
 - \Rightarrow P(Difference < Lower limit) = 5%
- □ One sided Question: Is the mean greater than 0?
 - \Rightarrow One side confidence interval
- \Box One sided lower confidence interval for μ :

$$(\bar{x} - t_{[1-\alpha;n-1]} \frac{s}{\sqrt{n}}, \bar{x})$$

Note t at 1- α (not 1- α /2)

 \Box One sided upper confidence interval for μ :

$$\left(\bar{x}, \bar{x} + t_{[1-\alpha;n-1]} \frac{s}{\sqrt{n}}\right)$$

□ For large samples: Use z instead of t

Washington University in St. Louis

CSE567M

☐ Time between crashes

System	Number	Mean	Stdv
A	972	124.10	198.20
В	153	141.47	226.11

- Assume unpaired observations
- Mean difference:

$$\bar{x}_A - \bar{x}_B = 124.10 - 141.47 = -17.37$$

■ Standard deviation of the difference:

$$s = \sqrt{\left(\frac{s_a^2}{n_a} + \frac{s_b^2}{n_b}\right)} = \sqrt{\frac{(198.20)^2}{972} + \frac{(226.11)^2}{153}} = 19.35$$

■ Effective number of degrees of freedom:

Washington University in St. Louis

CSE567M

Example 13.8 (Cont)

$$\nu = \frac{\left(\frac{s_a^2}{n_a} + \frac{s_b^2}{n_b}\right)^2}{\frac{1}{n_a+1} \left(\frac{s_a^2}{n_a}\right)^2 + \frac{1}{n_b+1} \left(\frac{s_b^2}{n_b}\right)^2} - 2$$

$$= \frac{\left(\frac{(198.20)^2}{972} + \frac{(226.11)^2}{153}\right)^2}{\frac{1}{972+1} \left(\frac{(198.20)^2}{972}\right)^2 + \frac{1}{153+1} \left(\frac{(226.11)^2}{153}\right)^2} - 2$$

$$= 191.05$$

- \triangleright $\nu > 30 \Rightarrow$ Use z rather than t
- One sided test \Rightarrow Use $z_{0.90}=1.28$ for 90% confidence
- 90% Confidence interval:

$$(-17.37, -17.37+1.28 * 19.35)=(-17.37, 7.402)$$

CI includes zero \Rightarrow System A is not more susceptible to crashes than system B. Washington University in St. Louis

CSE567M

Confidence Intervals for Proportions

- □ Proportion = probabilities of various categories
 - E.g., P(error)=0.01, P(No error)=0.99
- \square n₁ of n observations are of type 1 \Rightarrow

Sample proportion =
$$p = \frac{n_1}{n}$$

Confidence interval for the proportion = $p \mp z_{1-\alpha/2} \sqrt{\frac{p(1-p)}{n}}$

- Assumes Normal approximation of Binomial distribution \Rightarrow Valid only if $np \ge 10$.
- Need to use binomial tables if np < 10 Can't use t-values

Washington University in St. Louis

CSE567M

CI for Proportions (Cont)

□ 100(1-α)% one sided confidence interval for the proportion: ‡

$$\left(p, p + z_{1-\alpha} \sqrt{\frac{p(1-p)}{n}}\right)$$
 or $\left(p - z_{1-\alpha} \sqrt{\frac{p(1-p)}{n}}, p\right)$

‡Provided $np \ge 10$.

□ 10 out of 1000 pages printed on a laser printer are illegible.

Sample proportion =
$$p = \frac{10}{1000} = 0.01$$

□ np≥ 10

Confidence interval =
$$p \mp z \sqrt{\frac{p(1-p)}{n}}$$

= $0.01 \mp z \sqrt{\frac{0.01(0.99)}{1000}} = 0.01 \mp 0.003z$

 \bigcirc 90% confidence interval = 0.01 \mp (1.645)(0.003)

$$=(0.005, 0.015)$$

 \bigcirc 95% confidence interval = 0.01 \mp (1.960)(0.003)

$$=(0.004, 0.016)$$

Washington University in St. Louis

CSE567M

Example 13.9 (Cont)

- □ At 90% confidence:
 - 0.5% to 1.5% of the pages are illegible Chances of error = 10%
- □ At 95% Confidence:
 - 0.4% to 1.6% of the pages are illegible
 - Chances of error = 5%

Washington University in St. Louis

CSE567M

- 40 Repetitions on two systems: System A superior in 26 repetitions
- □ Question: With 99% confidence, is system A superior?

$$p = 26/40 = 0.65$$

- □ Standard deviation = $\sqrt{p*(1-p)/n} = 0.075$
- \bigcirc 99% confidence interval = 0.65 \mp (2.576)(0.075)

$$=(0.46, 0.84)$$

- □ CI includes 0.5

 ⇒ we cannot say with 99% confidence that system A is
 - superior.
- \bigcirc 90% confidence interval = 0.65 \mp (1.645)(0.075) = (0.53, 0.77)
- □ CI does not include 0.5
 - \Rightarrow Can say with 90% confidence that system A is superior.

Washington University in St. Louis

CSE567M

Sample Size for Determining Mean

- □ Larger sample ⇒ Narrower confidence interval \R Higher confidence
- Question: How many observations n to get an accuracy of \pm r% and a confidence level of $100(1-\alpha)$ %?

$$\bar{x} \mp z \frac{s}{\sqrt{n}}$$

□ r% Accuracy ⇒

$$CI = (\bar{x}(1 - r/100), \bar{x}(1 + r/100))$$

$$\exists \bar{x} \mp z \frac{s}{\sqrt{n}} = \bar{x} \left(1 \mp \frac{r}{100} \right)$$

$$z\frac{s}{\sqrt{n}} = \bar{x}\frac{r}{100}$$

$$n = \left(\frac{100zs}{r\bar{x}}\right)^2$$

Washington University in St. Louis

CSE567M

 \square Sample mean of the response time = 20 seconds

Sample standard deviation = 5

Question: How many repetitions are needed to get the response time accurate within 1 second at 95% confidence?

■ Required accuracy = 1 in 20 = 5%

Here, $\bar{x} = 20$, s= 5, z= 1.960, and r=5,

$$n = \left(\frac{(100)(1.960)(5)}{(5)(20)}\right)^2 = (9.8)^2 = 96.04$$

A total of 97 observations are needed.

Washington University in St. Louis

CSE567M

Sample Size for Determining Proportions

Confidence interval for the proportion $= p \mp z \sqrt{\left(\frac{p(1-p)}{n}\right)}$

To get a half-width (accuracy of) r:

$$p \mp r = p \mp z \sqrt{\left(\frac{p(1-p)}{n}\right)}$$

$$r = z\sqrt{\left(\frac{p(1-p)}{n}\right)}$$

$$n = z^2 \frac{p(1-p)}{r^2}$$

Washington University in St. Louis

CSE567M

- □ Preliminary measurement : illegible print rate of 1 in 10,000.
- □ Question: How many pages must be observed to get an accuracy of 1 per million at 95% confidence?
- Answer:

$$p = 1/10000 = 1E - 4, r = 1E - 6, z = 1.960$$

$$n = (1.960)^2 \left(\frac{10^{-4}(1 - 10^{-4})}{(10^{-6})^2} \right) = 384160000$$

A total of 384.16 million pages must be observed.

Washington University in St. Louis

CSE567M

- □ Algorithm A loses 0.5% of packets and algorithm B loses 0.6%.
- □ Question: How many packets do we need to observe to state with 95% confidence that algorithm A is better than the algorithm B?
- Answer:

CI for algorithm A =
$$0.005 \mp 1.960 \left(\frac{0.005(1 - 0.005)}{n} \right)^{1/2}$$

CI for algorithm B =
$$0.006 \mp 1.960 \left(\frac{0.006(1 - 0.006)}{n} \right)^{1/2}$$

Washington University in St. Louis

CSE567M

Example 13.13 (Cont)

□ For non-overlapping intervals:

$$0.005 \mp 1.960 \left(\frac{0.005(1-0.005)}{n} \right)^{1/2}$$

$$\leq 0.006 \mp 1.960 \left(\frac{0.006(1-0.006)}{n} \right)^{1/2}$$

 \square n = 84340 \Rightarrow We need to observe 85,000 packets.

Washington University in St. Louis

CSE567M

- All statistics based on a sample are random and should be specified with a confidence interval
- □ If the confidence interval includes zero, the hypothesis that the population mean is zero cannot be rejected
- □ Paired observations Test the difference for zero mean
- Unpaired observations More sophisticated test
- Confidence intervals apply to proportions too.

Washington University in St. Louis

CSE567M

Exercise 13.1

- Given two samples $\{x_1, x_2, ..., x_n\}$ and $\{y_1, y_2, ..., y_n\}$ from normal population $N(\mu, 1)$, what is the distribution of:
 - > Sample means: \bar{x} , \bar{y}
 - > Difference of the means: $\bar{x} \bar{y}$
 - > Sum of the means: $\bar{x} + \bar{y}$
 - > Mean of the means: $(\bar{x} + \bar{y})/2$
 - > Normalized sample variances: s_x^2 , s_y^2
 - > Sum of sample variances: $s_x^2 + s_y^2$
 - > Ratio of sample variances: s_x^2/s_y^2
 - > Ratio $(\bar{x} \mu)/s_x/\sqrt{n}$

Exercise 13.2

- □ Answer the following for the data of Exercise 12.1:
 - > What is the 10-percentile and 90-percentile from the sample?
 - > What is the mean number of disk I/Os per program?
 - > What is the 90% confidence interval for the mean?
 - > What fraction of programs make less than or equal to 25 I/Os and what is the 95% confidence interval for the fraction?
 - > What is the one sided 90% confidence interval for the mean?

Washington University in St. Louis

CSE567M

Exercise 13.3

- □ For the code size data of Table 11.2, find the confidence intervals for the average code sizes on various processors. Choose any two processors and answer the following:
 - > At what level of significance, can you say that one is better than the other?
 - > How many workloads would you need to decide the superiority at 90% confidence?

Homework

- □ Read chapter 13
- □ Submit solution to Exercise 13.2

Washington University in St. Louis

CSE567M