Comparing Systems Comparing Systems Using Sample Data Using Sample Data

Raj Jain Washington University in Saint Louis Saint Louis, MO 63130 Jain@cse.wustl.edu

These slides are available on-line at:

http://www.cse.wustl.edu/~jain/cse567-06/

- **Sample Versus Population**
- **Q.** Confidence Interval for The Mean
- **Q** Approximate Visual Test
- **Q One Sided Confidence Intervals**
- **Q** Confidence Intervals for Proportions
- **□ Sample Size for Determining Mean and proportions**

Sample Versus Population Sample Versus Population

- \Box Generate several million random numbers with mean $μ$ and standard deviation $σ$
	- Draw a sample of n observations

 $\bar{x} \neq \mu$

- \Box Sample mean ≠ population mean
- **Q** Parameters: population characteristics
	- $=$ Unknown $=$ Greek
- \Box Statistics: Sample estimates $=$ Random $=$ English

Confidence Interval for The Mean Confidence Interval for The Mean

Determining Confidence Interval Determining Confidence Interval

- \Box Use 5-percentile and 95-percentile of the sample means to get 90% Confidence interval \Rightarrow Need many samples.
- **□** Central limit theorem: Sample mean of independent and identically distributed observations:

 $\bar{x} \sim N(\mu, \sigma/\sqrt{n})$

Where μ = population mean, σ = population standard deviation **□** Standard Error: Standard deviation of the sample mean =

 \Box 100(1-a)% confidence interval for μ:

$$
(\bar{x} - z_{1-\alpha/2}s/\sqrt{n}, \bar{x} + z_{1-\alpha/2}s/\sqrt{n}
$$

$$
z_{1-\alpha/2} = (1-\alpha/2)
$$
-quantile of N(0,1)

Washington University in St. Louis CSE567M

 $-Z_{1-\alpha/2}$

2 0 $-Z_{1-\alpha}$

Example 13.1 Example 13.1

- \Box $x = 3.90$, s = 0.95 and $n = 32$
- \Box A 90% confidence interval for the mean =
- \Box We can state with 90% confidence that the population mean is between 3.62 and 4.17 The chance of error in this statement is 10%.
- A 95\% confidence interval for the mean = $3.90 \pm (1.960)(0.95)/\sqrt{32}$ $= (3.57, 4.23)$
- A 99% confidence interval for the mean = $3.90 \pm (2.576)(0.95)/\sqrt{32}$ $= (3.46, 4.33)$

Confidence Interval: Meaning Confidence Interval: Meaning

 \Box If we take 100 samples and construct confidence interval for each sample, the interval would include the population mean in 90 cases.

Confidence Interval for Small Samples Confidence Interval for Small Samples

 \Box 100(1- α) % confidence interval for for n < 30:

$$
(\bar{x} - t_{[1-\alpha/2;n-1]}s/\sqrt{n}, \bar{x} + t_{[1-\alpha/2;n-1]}s/\sqrt{n})
$$

 $\mathbf{u}_{[1-\alpha/2; n-1]} = (1-\alpha/2)$ -quantile of a t-variate with n-1 degrees of freedom

$$
x \sim N(\mu, \sigma^2)
$$

\n
$$
\Rightarrow (\bar{x} - \mu)/(\sigma/\sqrt{n}) \sim N(0, 1)
$$

\n
$$
(n - 1)s^2/\sigma^2 \sim \chi^2(n - 1)
$$

\n
$$
(\bar{x} - \mu)/\sqrt{s^2/n} \sim t(n - 1)
$$

Example 13.2 Example 13.2

- **□ Sample: -0.04, -0.19, 0.14, -0.09, -0.14, 0.19, 0.04,** and 0.09.
- \Box Mean = 0, Sample standard deviation = 0.138.
- \Box For 90% interval: t_[0.95;7] = 1.895
- \Box Confidence interval for the mean
- $0 \pm 1.895 \times 0.138 = 0 \pm 0.262 = (-0.262, 0.262)$

Example 13.3 Example 13.3

- \Box Difference in processor times: {1.5, 2.6, -1.8, 1.3, -0.5, 1.7, 2.4}.
- **□** Question: Can we say with 99% confidence that one is superior to the other?

Sample size $= n = 7$ Mean $= 7.20/7 = 1.03$ Sample variance = $(22.84 - 7.20 \times 7.20) / 6 = 2.57$ Sample standard deviation } = $\sqrt{2.57}$ = 1.60 Confidence interval = $1.03 \pm t * 1.60/\sqrt{7} = 1.03 \pm 0.6t$ $100(1-\alpha) = 99$, $\alpha = 0.01$, $1-\alpha/2 = 0.995$ $t_{[0.995: 6]} = 3.707$ 99% confidence interval $=$ $(-1.21, 3.27)$ \Box Washington University in St. Louis CSE567M ©2006 Raj Jain

Example 13.3 (Cont) Example 13.3 (Cont)

- **□** Opposite signs \Rightarrow we cannot say with 99% confidence that the mean difference is significantly different from zero.
- \Box Answer: They are same.
- \Box Answer: The difference is zero.

Example 13.4 Example 13.4

- \Box Difference in processor times: $\{1.5, 2.6, -1.8, 1.3, -1.8, 1.3, -1.5, 1.3, 1.3, -1.5, 1.3, 1.3, -1.5, 1.3, 1.3, -1.3, 1.3, -1.3, 1.3, -1.3, 1.3, -1.3, 1.3, -1.3, 1.3, -1.3, 1.3, -1.3, 1.3, -1.3, 1.3, -1.3, 1.3, -1.3, 1.3, -1.3, 1.$ 0.5, 1.7, 2.4}.
- **□ Question: Is the difference 1?**
- \Box 99% Confidence interval = $(-1.21, 3.27)$
- \Box Yes: The difference is 1

Paired vs. Unpaired Comparisons Paired vs. Unpaired Comparisons

- **<u>Example</u>**: one-to-one correspondence between the ith test of system A and the ith test on system B
- **Example: Performance on ith workload**
- \Box Use confidence interval of the difference
- \square **Unpaired**: No correspondence
- ! Example: *ⁿ* people on System A, *ⁿ* on System B ⇒Need more sophisticated method

Example 13.5 Example 13.5

- \Box Performance: {(5.4, 19.1), (16.6, 3.5), (0.6, 3.4), (1.4, 2.5), (0.6, 3.6), (7.3, 1.7)}. Is one system better?
- □ Differences: $\{-13.7, 13.1, -2.8, -1.1, -3.0, 5.6\}.$

```
Sample mean =-0.32Sample variance = 81.62Sample standard deviation = 9.03Confidence interval for the mean = -0.32 \pm t \sqrt{(81.62/6)}= -0.32 \mp t(3.69)t_{[0.95,5]} = 2.01590\% confidence interval = -0.32 \pm (2.015)(3.69)= (-7.75, 7.11)
```
 \Box Answer: No. They are not different.

Unpaired Observations Unpaired Observations

 \Box Compute the sample means:

$$
\bar{x}_a = \frac{1}{n_a} \sum_{i=1}^{n_a} x_{ia}
$$

$$
\bar{x}_b = \frac{1}{n_b} \sum_{i=1}^{n_b} x_{ib}
$$

 \Box Compute the sample standard deviations:

$$
s_a = \left\{ \frac{\left(\sum_{i=1}^{n_a} x_{ia}^2\right) - n_a \bar{x}_a^2}{n_a - 1} \right\}^{\frac{1}{2}}
$$

$$
s_b = \left\{ \frac{\left(\sum_{i=1}^{n_b} x_{ib}^2\right) - n_b \bar{x}_b^2}{n_b - 1} \right\}^{\frac{1}{2}}
$$

Washington University in St. Louis

Unpaired Observations (Cont) Unpaired Observations (Cont)

- \Box Compute the mean difference: $(\bar{x}_a - \bar{x}_b)$
- \Box Compute the standard deviation of the mean difference:

$$
s = \sqrt{\left(\frac{s_a^2}{n_a} + \frac{s_b^2}{n_b}\right)}
$$

 \Box Compute the effective number of degrees of freedom:

$$
\nu = \frac{\left(\frac{s_a^2}{n_a} + \frac{s_b^2}{n_b}\right)^2}{\frac{1}{n_a+1}\left(\frac{s_a^2}{n_a}\right)^2 + \frac{1}{n_b+1}\left(\frac{s_b^2}{n_b}\right)^2} - 2
$$

 \Box Compute the confidence interval for the mean difference:

$$
(\bar{x}_a - \bar{x}_b) \mp t_{[1-\alpha/2;\nu]}s
$$

Example 13.6 Example 13.6

- \Box Times on System A: {5.36, 16.57, 0.62, 1.41, 0.64, 7.26} Times on system B: {19.12, 3.52, 3.38, 2.50, 3.60, 1.74}
- \Box Question: Are the two systems significantly different?
- \Box For system A:

Mean
$$
\bar{x}_a = 5.31
$$

Variance $s_a^2 = 37.92$
 $n_a = 6$

 \Box For System B:

Mean
$$
\bar{x}_b = 5.64
$$

Variance $s_b^2 = 44.11$
 $n_b = 6$

Example 13.6 (Cont) Example 13.6 (Cont)

Mean difference $\bar{x}_a - \bar{x}_b = -0.33$ Standard deviation of the mean difference $= 3.698$ Effective number of degrees of freedom $f = 11.921$ The 0.95-quantile of a t-variate with 12 degrees of freedom $= 1.71$ The 90\% confidence interval for the difference $= (-6.92, 6.26)$

 \Box The confidence interval includes zero \Rightarrow the two systems are not different.

13-21

Example 13.7 Example 13.7

- \Box Times on System A: {5.36, 16.57, 0.62, 1.41, 0.64, 7.26} Times on system B: {19.12, 3.52, 3.38, 2.50, 3.60, 1.74} $t_{[0.95, 5]} = 2.015$
- \Box The 90% confidence interval for the mean of A = 5.31 ± 1.5

 $(2.015)\sqrt{(37.92/6)}$

 $= (0.24, 10.38)$

□ The 90% confidence interval for the mean of B = 5.64 \mp

 $(2.015)\sqrt{(44.11/6)}$

 $= (0.18, 11.10)$

 \Box Confidence intervals overlap and the mean of one falls in the confidence interval for the other.

⇒ Two systems are not different at this level of confidence.

What Confidence Level To Use? What Confidence Level To Use?

- Need not always be 90% or 95% or 99%
- \Box Base on the loss that you would sustain if the parameter is outside the range and the gain you would have if the parameter is inside the range.
- \Box Low loss \Rightarrow Low confidence level is fine
	- E.g., lottery of 5 Million with probability 10-7
- \Box 90% confidence) buy nine million tickets
- \Box 0.01% confidence level is fine.
- **□** 50% confidence level may or may not be too low
- \Box 99% confidence level may or may not be too high

Hypothesis Testing vs. Confidence Intervals Hypothesis Testing vs. Confidence Intervals

- \Box Confidence interval provides more information
- \Box Hypothesis test $=$ yes-no decision
- \Box Confidence interval also provides possible range
- \Box Narrow confidence interval ⇒ high degree of precision
- \Box Wide confidence interval ⇒ Low precision
- Example: $(-100,100) \Rightarrow$ No difference

 $(-1,1) \Rightarrow$ No difference

- \Box Confidence intervals tell us not only what to say but also how loudly to say it
- \Box CI is easier to explain to decision makers
- \Box CI is more useful.
	- E.g., parameter range (100, 200)
	- vs. Probability of (parameter $= 110$) = 3%

One Sided Confidence Intervals One Sided Confidence Intervals

 \Box Two side intervals: 90\% Confidence \Rightarrow P(Difference > upper limit) = 5%

 \Rightarrow P(Difference < Lower limit) = 5%

- \Box One sided Question: Is the mean greater than 0? \Rightarrow One side confidence interval
- \Box One sided lower confidence interval for μ:

$$
(\bar{x}-t_{[1-\alpha;n-1]}\frac{s}{\sqrt{n}},\bar{x})
$$

Note t at 1- α (not 1- $\alpha/2$)

 \Box One sided upper confidence interval for μ :

$$
\left(\bar{x},\bar{x}+t_{[1-\alpha;n-1]}\frac{s}{\sqrt{n}}\right)
$$

 \Box For large samples: Use z instead of t

Washington University in St. Louis CSE567M ©2006 Raj Jain

Example 13.8 Example 13.8

 \Box Time between crashes

- **E** Assume unpaired observations
- \Box Mean difference:

$$
\bar{x}_A - \bar{x}_B = 124.10 - 141.47 = -17.37
$$

□ Standard deviation of the difference:

$$
s = \sqrt{\left(\frac{s_a^2}{n_a} + \frac{s_b^2}{n_b}\right)} = \sqrt{\frac{(198.20)^2}{972} + \frac{(226.11)^2}{153}} = 19.35
$$

Example 25 Therefore number of degrees of freedom:
Washington University in St. Louis
EXAMPLE 36
Example 47
Example 58
Example 68
Example 69
Example 70
Example 81
Example 83
Example 98
Example 13-26

$$
\nu = \frac{\left(\frac{s_a^2}{n_a} + \frac{s_b^2}{n_b}\right)^2}{\frac{1}{n_a+1}\left(\frac{s_a^2}{n_a}\right)^2 + \frac{1}{n_b+1}\left(\frac{s_b^2}{n_b}\right)^2} - 2
$$

$$
= \frac{\left(\frac{(198.20)^2}{972} + \frac{(226.11)^2}{153}\right)^2}{\frac{1}{972+1}\left(\frac{(198.20)^2}{972}\right)^2 + \frac{1}{153+1}\left(\frac{(226.11)^2}{153}\right)^2} - 2
$$

$$
= 191.05
$$

 \Box $v > 30 \Rightarrow$ Use z rather than t

 \Box **□** One sided test \Rightarrow Use $z_{0.90}$ =1.28 for 90% confidence

 \Box 90% Confidence interval:

Washington University in St. Louis **CSE567M** CSE567M ©2006 Raj Jain $(-17.37, -17.37+1.28 * 19.35) = (-17.37, 7.402)$ \Box CI includes zero \Rightarrow System A is not more susceptible to crashes than system B.

Confidence Intervals for Proportions Confidence Intervals for Proportions

- \Box Proportion = probabilities of various categories
	- E.g., P(error)=0.01, P(No error)=0.99
- \Box n₁ of n observations are of type 1 \Rightarrow

Sample proportion $= p = \frac{n_1}{n_2}$

Confidence interval for the proportion = $p \mp z_{1-\alpha/2}$

- \Box Assumes Normal approximation of Binomial distribution ⇒ Valid only if *np*≥ 10.
- Need to use binomial tables if *np* < 10 Can't use t-values

CI for Proportions (Cont) CI for Proportions (Cont)

 \Box 100(1- α)% one sided confidence interval for the proportion: $\ddot{\dagger}$

$$
\left(p, p+z_{1-\alpha}\sqrt{\frac{p(1-p)}{n}}\right) \text{ or } \left(p-z_{1-\alpha}\sqrt{\frac{p(1-p)}{n}}, p\right)
$$

^áProvided *np*≥ 10.

Example 13.9 Example 13.9 10 out of 1000 pages printed on a laser printer are illegible.
Sample proportion = $p = \frac{10}{1000} = 0.01$ \Box \Box np ≥ 10 Confidence interval = $p \mp z \sqrt{\frac{p(1-p)}{n}}$ $= 0.01 \pm z \sqrt{\frac{0.01(0.99)}{1000}} = 0.01 \pm 0.003z$ 90% confidence interval = $0.01 \pm (1.645)(0.003)$ \Box $= (0.005, 0.015)$ **□** 95% confidence interval = $0.01 \pm (1.960)(0.003)$ $= (0.004, 0.016)$ Washington University in St. Louis CSE567M ©2006 Raj Jain

Example 13.9 (Cont) Example 13.9 (Cont)

 \Box At 90% confidence:

0.5% to 1.5% of the pages are illegible Chances of error $= 10\%$

E At 95% Confidence:

0.4% to 1.6% of the pages are illegible

```
Chances of error = 5\%
```
Example 13.10 Example 13.10

- \Box 40 Repetitions on two systems: System A superior in 26 repetitions
- **□** Question: With 99% confidence, is system A superior?

 $p = 26/40 = 0.65$

 \Box Standard deviation = $\sqrt{p*(1-p)/n} = 0.075$ **□** 99% confidence interval = $0.65 \pm (2.576)(0.075)$

 $= (0.46, 0.84)$

 \Box CI includes 0.5

 \Rightarrow we cannot say with 99% confidence that system A is

superior.

 \Box 90% confidence interval = 0.65 \mp (1.645)(0.075) = (0.53, 0.77)

 \Box CI does not include 0.5 \Rightarrow Can say with 90% confidence that system A is superior.

Sample Size for Determining Mean

□ Larger sample \Rightarrow Narrower confidence interval \mathbb{R} Higher

confidence

 \mathcal{S}

 \Box Question: How many observations n to get an accuracy of \pm

r% and a confidence level of $100(1-\alpha)\%$?

$$
x \mp z \overline{\sqrt{n}}
$$

\n
$$
\Box \text{ r% Accuracy} \Rightarrow
$$

\n
$$
\text{CI} = (\bar{x}(1 - r/100), \bar{x}(1 + r/100))
$$

\n
$$
\overline{x} \mp z \frac{s}{\sqrt{n}} = \bar{x} \left(1 \mp \frac{r}{100}\right)
$$

\n
$$
z \frac{s}{\sqrt{n}} = \bar{x} \frac{r}{100}
$$

\n
$$
n = \left(\frac{100zs}{r\bar{x}}\right)^2
$$

Example 13.11 Example 13.11

 \Box Sample mean of the response time $= 20$ seconds Sample standard deviation $= 5$

Question: How many repetitions are needed to get the response time accurate within 1 second at 95% confidence?

 \Box Required accuracy = 1 in 20 = 5%

Here,
$$
\bar{x} = 20
$$
, s= 5, z= 1.960, and r=5,

$$
n = \left(\frac{(100)(1.960)(5)}{(5)(20)}\right)^2 = (9.8)^2 = 96.04
$$

A total of 97 observations are needed.

Sample Size for Determining Proportions Sample Size for Determining Proportions

Confidence interval for the proportion $= p \mp z \sqrt{\frac{p^2}{n}}$

$$
\left(\frac{p(1-p)}{n}\right)
$$

To get a half-width (accuracy of) r:

$$
p \mp r = p \mp z \sqrt{\left(\frac{p(1-p)}{n}\right)}
$$

$$
r = z \sqrt{\left(\frac{p(1-p)}{n}\right)}
$$

$$
n = z^2 \frac{p(1-p)}{r^2}
$$

Washington University in St. Louis CSE567M ©2006 Raj Jain

$$
13-35
$$

Example 13.12 Example 13.12

- \Box Preliminary measurement : illegible print rate of 1 in 10,000.
- **Question: How many pages must be observed to get** an accuracy of 1 per million at 95% confidence?
- **Q** Answer:

$$
p = 1/10000 = 1E - 4, r = 1E - 6, z = 1.960
$$

$$
n = (1.960)^{2} \left(\frac{10^{-4} (1 - 10^{-4})}{(10^{-6})^{2}} \right) = 384160000
$$

A total of 384.16 million pages must be observed.

Example 13.13 Example 13.13

- \Box Algorithm A loses 0.5% of packets and algorithm B loses 0.6% .
- **□** Question: How many packets do we need to observe to state with 95% confidence that algorithm A is better than the algorithm B?
- **Q** Answer:

CI for algorithm A =
$$
0.005 \pm 1.960 \left(\frac{0.005(1 - 0.005)}{n} \right)^{1/2}
$$

CI for algorithm B =
$$
0.006 \pm 1.960 \left(\frac{0.006(1 - 0.006)}{n} \right)^{1/2}
$$

- **□** All statistics based on a sample are random and should be specified with a confidence interval
- \Box If the confidence interval includes zero, the hypothesis that the population mean is zero cannot be rejected
- \Box Paired observations Test the difference for zero mean
- \Box Unpaired observations More sophisticated test
- \Box Confidence intervals apply to proportions too.

Exercise 13.1 Exercise 13.1

- \Box Given two samples $\{x_1, x_2, ..., x_n\}$ and $\{y_1, y_2, ..., y_n\}$ from normal population $N(\mu,1)$, what is the distribution of:
	- > Sample means:
	- \triangleright Difference of the means:
	- \triangleright Sum of the means:
	- \triangleright Mean of the means:
	- \triangleright Normalized sample variances: s_x^2 , s_y^2
	- \triangleright Sum of sample variances: $s_x^2 + s_y^2$
	- \triangleright Ratio of sample variances: s_x^2/s_y^2

▶ Ratio
$$
(\bar{x} - \mu)/s_x/\sqrt{n}
$$

Exercise 13.2

- **□ Answer the following for the data of Exercise 12.1:**
	- \triangleright What is the 10-percentile and 90-percentile from the sample?
	- \triangleright What is the mean number of disk I/Os per program?
	- \triangleright What is the 90% confidence interval for the mean?
	- > What fraction of programs make less than or equal to 25 I/Os and what is the 95% confidence interval for the fraction?
	- \triangleright What is the one sided 90% confidence interval for the mean?

Exercise 13.3 Exercise 13.3

- \Box For the code size data of Table 11.2, find the confidence intervals for the average code sizes on various processors. Choose any two processors and answer the following:
	- \triangleright At what level of significance, can you say that one is better than the other?
	- > How many workloads would you need to decide the superiority at 90% confidence?

Homework Homework

- **□** Read chapter 13
- **Submit solution to Exercise 13.2**