
4-1
©2006 Raj JainCSE567MWashington University in St. Louis

Types of Types of
WorkloadsWorkloads

Raj Jain
Washington University in Saint Louis

Saint Louis, MO 63130
Jain@cse.wustl.edu

These slides are available on-line at:
http://www.cse.wustl.edu/~jain/cse567-06/

4-2
©2006 Raj JainCSE567MWashington University in St. Louis

OverviewOverview

! Terminology
! Test Workloads for Computer Systems

" Addition Instruction
" Instruction Mixes
" Kernels
" Synthetic Programs
" Application Benchmarks: Sieve, Ackermann's Function,

Debit-Credit, SPEC

4-3
©2006 Raj JainCSE567MWashington University in St. Louis

Part II: Measurement Techniques and ToolsPart II: Measurement Techniques and Tools

Measurements are not to provide numbers but insight
- Ingrid Bucher

1. What are the different types of workloads?
2. Which workloads are commonly used by other analysts?
3. How are the appropriate workload types selected?
4. How is the measured workload data summarized?
5. How is the system performance monitored?
6. How can the desired workload be placed on the system in a

controlled manner?
7. How are the results of the evaluation presented?

4-4
©2006 Raj JainCSE567MWashington University in St. Louis

TerminologyTerminology
! Test workload: Any workload used in performance studies.

Test workload can be real or synthetic.
! Real workload: Observed on a system being used for normal

operations.
! Synthetic workload:

" Similar to real workload
" Can be applied repeatedly in a controlled manner
" No large real-world data files
" No sensitive data
" Easily modified without affecting operation
" Easily ported to different systems due to its small size
" May have built-in measurement capabilities.

4-5
©2006 Raj JainCSE567MWashington University in St. Louis

Test Workloads for Computer SystemsTest Workloads for Computer Systems

1. Addition Instruction
2. Instruction Mixes
3. Kernels
4. Synthetic Programs
5. Application Benchmarks

4-6
©2006 Raj JainCSE567MWashington University in St. Louis

Addition InstructionAddition Instruction

! Processors were the most expensive and most used
components of the system

! Addition was the most frequent instruction

4-7
©2006 Raj JainCSE567MWashington University in St. Louis

Instruction MixesInstruction Mixes
! Instruction mix = instructions + usage frequency
! Gibson mix: Developed by Jack C. Gibson in 1959 for IBM

704 systems.

4-8
©2006 Raj JainCSE567MWashington University in St. Louis

Instruction Mixes (Cont)Instruction Mixes (Cont)
! Disadvantages:

" Complex classes of instructions not reflected in the mixes.
" Instruction time varies with:

! Addressing modes
! Cache hit rates
! Pipeline efficiency
! Interference from other devices during processor-

memory access cycles
! Parameter values
! Frequency of zeros as a parameter
! The distribution of zero digits in a multiplier
! The average number of positions of preshift in floating-

point add
! Number of times a conditional branch is taken

!

4-9
©2006 Raj JainCSE567MWashington University in St. Louis

Instruction Mixes (Cont)Instruction Mixes (Cont)

! Performance Metrics:
" MIPS = Millions of Instructions Per Second
" MFLOPS = Millions of Floating Point Operations

Per Second

4-10
©2006 Raj JainCSE567MWashington University in St. Louis

KernelsKernels

! Kernel = nucleus
! Kernel= the most frequent function
! Commonly used kernels: Sieve, Puzzle, Tree

Searching, Ackerman's Function, Matrix Inversion,
and Sorting.

! Disadvantages: Do not make use of I/O devices

4-11
©2006 Raj JainCSE567MWashington University in St. Louis

Synthetic ProgramsSynthetic Programs

! To measure I/O performance lead analysts ⇒ Exerciser loops

! The first exerciser loop was by Buchholz (1969) who
called it a synthetic program.

! A Sample Exerciser: See program listing Figure 4.1 in
the book

4-12
©2006 Raj JainCSE567MWashington University in St. Louis

Synthetic ProgramsSynthetic Programs
! Advantage:

" Quickly developed and given to different vendors.
" No real data files
" Easily modified and ported to different systems.
" Have built-in measurement capabilities
" Measurement process is automated
" Repeated easily on successive versions of the operating

systems
! Disadvantages:

" Too small
" Do not make representative memory or disk references
" Mechanisms for page faults and disk cache may not be

adequately exercised.
" CPU-I/O overlap may not be representative.
" Loops may create synchronizations ⇒ better or worse

performance.

4-13
©2006 Raj JainCSE567MWashington University in St. Louis

Application BenchmarksApplication Benchmarks

! For a particular industry: Debit-Credit for Banks
! Benchmark = workload (Except instruction mixes)
! Some Authors: Benchmark = set of programs taken

from real workloads
! Popular Benchmarks

4-14
©2006 Raj JainCSE567MWashington University in St. Louis

SieveSieve
! Based on Eratosthenes' sieve algorithm: find all prime numbers

below a given number n.
! Algorithm:

" Write down all integers from 1 to n
" Strike out all multiples of k, for k=2, 3, …, √n.

! Example:
" Write down all numbers from 1 to 20. Mark all as prime:
1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20

! Remove all multiples of 2 from the list of primes:
1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20

4-15
©2006 Raj JainCSE567MWashington University in St. Louis

Sieve (Cont)Sieve (Cont)

! The next integer in the sequence is 3. Remove all
multiples of 3:

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18,
19, 20

! 5 > √20 ⇒ Stop
! Pascal Program to Implement the Sieve Kernel:

See Program listing Figure 4.2 in the book

4-16
©2006 Raj JainCSE567MWashington University in St. Louis

Ackermann's FunctionAckermann's Function
! To assess the efficiency of the procedure-calling mechanisms.

The function has two parameters and is defined recursively.
! Ackermann(3, n) evaluated for values of n from one to six.
! Metrics:

" Average execution time per call
" Number of instructions executed per call, and
" Stack space per call

! Verification: Ackermann(3, n) = 2n+3-3
! Number of recursive calls in evaluating Ackermann(3,n):

(512× 4n-1 -15 × 2n+3 + 9n + 37)/3
Execution time per call.
! Depth of the procedure calls = 2n+3-4 ⇒ stack space required

doubles when n ← n+1.

4-17
©2006 Raj JainCSE567MWashington University in St. Louis

Ackermann Program in SimulaAckermann Program in Simula

! See program listing Figure 4.3 in the book

4-18
©2006 Raj JainCSE567MWashington University in St. Louis

Other BenchmarksOther Benchmarks

! Whetstone
! U.S. Steel
! LINPACK
! Dhrystone
! Doduc
! TOP
! Lawrence Livermore Loops
! Digital Review Labs
! Abingdon Cross Image-Processing Benchmark

4-19
©2006 Raj JainCSE567MWashington University in St. Louis

DebitDebit--Credit BenchmarkCredit Benchmark

! A de facto standard for transaction processing
systems.

! First recorded in Anonymous et al (1975).
! In 1973, a retail bank wanted to put its 1000

branches, 10,000 tellers, and 10,000,000 accounts
online with a peak load of 100 Transactions Per
Second (TPS).

! Each TPS requires 10 branches, 100 tellers, and
100,000 accounts.

4-20
©2006 Raj JainCSE567MWashington University in St. Louis

DebitDebit--Credit (Cont)Credit (Cont)

4-21
©2006 Raj JainCSE567MWashington University in St. Louis

DebitDebit--Credit Benchmark (Continued)Credit Benchmark (Continued)
! Metric: price/performance ratio.
! Performance: Throughput in terms of TPS such that 95% of all

transactions provide one second or less response time.
! Response time: Measured as the time interval between the

arrival of the last bit from the communications line and the
sending of the first bit to the communications line.

! Cost = Total expenses for a five-year period on purchase,
installation, and maintenance of the hardware and software in
the machine room.

! Cost does not include expenditures for terminals,
communications, application development, or operations.

4-22
©2006 Raj JainCSE567MWashington University in St. Louis

PseudoPseudo--code Definition of Debitcode Definition of Debit--CreditCredit

! See Figure 4.5 in the book
! Four record types: account, teller, branch, and history.
! Fifteen percent of the transactions require remote

access
! Transactions Processing Performance Council (TPC)

was formed in August 1988.
! TPC BenchmarkTM A is a variant of the debit-credit
! Metrics: TPS such that 90% of all transactions provide

two seconds or less response time.

4-23
©2006 Raj JainCSE567MWashington University in St. Louis

SPEC Benchmark SuiteSPEC Benchmark Suite
! Systems Performance Evaluation Cooperative (SPEC): Non-

profit corporation formed by leading computer vendors to
develop a standardized set of benchmarks.

! Release 1.0 consists of the following 10 benchmarks: GCC,
Espresso, Spice 2g6, Doduc, LI, Eqntott, Matrix300, Fpppp,
Tomcatv

! Primarily stress the CPU, Floating Point Unit (FPU), and to
some extent the memory subsystem ⇒ Το compare CPU
speeds.

! Benchmarks to compare I/O and other subsystems may be
included in future releases.

4-24
©2006 Raj JainCSE567MWashington University in St. Louis

SPEC (Cont)SPEC (Cont)
! The elapsed time to run two copies of a benchmark on each of

the N processors of a system (a total of 2N copies) is measured
and compared with the time to run two copies of the
benchmark on a reference system (which is VAX-11/780 for
Release 1.0).

! For each benchmark, the ratio of the time on the system under
test and the reference system is reported as SPECthruput
using a notation of #CPU@Ratio. For example, a system with
three CPUs taking 1/15 times as long as the the reference
system on GCC benchmark has a SPECthruput of 3@15.

! Measure of the per processor throughput relative to the
reference system

4-25
©2006 Raj JainCSE567MWashington University in St. Louis

SPEC (Cont)SPEC (Cont)
! The aggregate throughput for all processors of a multiprocessor

system can be obtained by multiplying the ratio by the number
of processors. For example, the aggregate throughput for the
above system is 45.

! The geometric mean of the SPECthruputs for the 10
benchmarks is used to indicate the overall performance for the
suite and is called SPECmark.

4-26
©2006 Raj JainCSE567MWashington University in St. Louis

SummarySummary

! Synthetic workload are representative, repeatable, and
avoid sensitive information

! Add instruction – most frequent instruction initially
! Instruction mixes, Kernels, synthetic programs
! Application benchmarks: Sieve, Ackerman, …
! Benchmark standards: Debit-Credit, SPEC

4-27
©2006 Raj JainCSE567MWashington University in St. Louis

Exercise 4.1Exercise 4.1

Select an area of computer systems (for example,
processor design, networks, operating systems, or
databases), review articles on performance evaluation
in that area and make a list of benchmarks used in
those articles.

4-28
©2006 Raj JainCSE567MWashington University in St. Louis

Exercise 4.2Exercise 4.2

Implement the Sieve workload in a language of your
choice, run it on systems available to you, and report
the results.

