# Multimedia Networking

### Raj Jain

Washington University in Saint Louis Saint Louis, MO 63130 Jain@wustl.edu

Audio/Video recordings of this lecture are available on-line at:

http://www.cse.wustl.edu/~jain/cse473-21/

http://www.cse.wustl.edu/~jain/cse473-21/

©2021 Raj Jain



- Multimedia Networking Applications
- Skype
- Real-Time Transport Protocol (RTP)
- Session Initiation Protocol (SIP)

**Note**: This class lecture is based on Chapter 9 of the textbook (Kurose and Ross) and the figures provided by the authors.

Washington University in St. Louis

http://www.cse.wustl.edu/~jain/cse473-21/

©2021 Raj Jain



## **Multimedia Applications**

- 1. Audio Digitization
- 2. Playout Buffers
- 3. Streaming Using UDP
- 4. Streaming Using HTTP

## **Audio Digitization**

audio signal amplitude

#### □ **Sampling**: Analog audio signal sampled at constant rate

- > Telephone:8,000 samples/sec
- CD music: 44,100 samples/sec
- **Quantization**: Each sample
  - > 8 bits:  $2^8=256$  values
  - > 16 bit:  $2^{16}$  values
- □ 8 k samples/s each 8 bit
   ⇒ 64 kbps
- **Compression**: Compress to 5-16 kbps, e.g., using differences
- □ Lower bits/sample, samples/sec, or higher compression ⇒ Lower Quality

Washington University in St. Louis

http://www.cse.wustl.edu/~jain/cse473-21/

quantization

sampling rate
(N sample/sec)

error

©2021 Raj Jain

quantized value

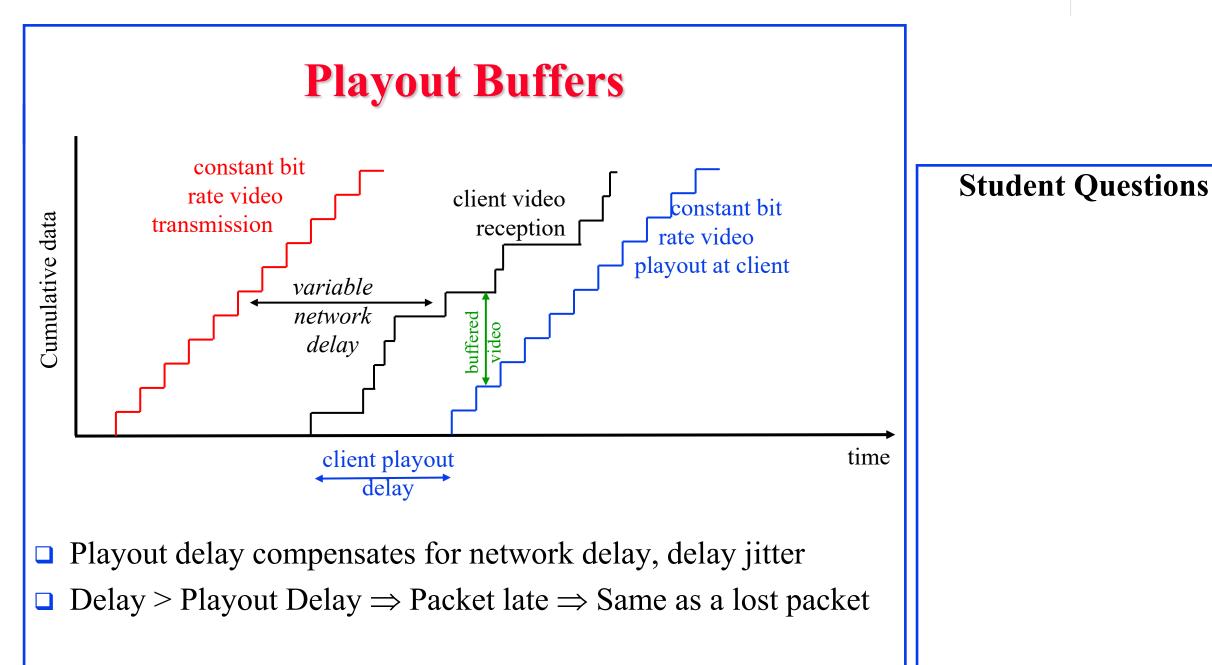
analog signal

time

analog value

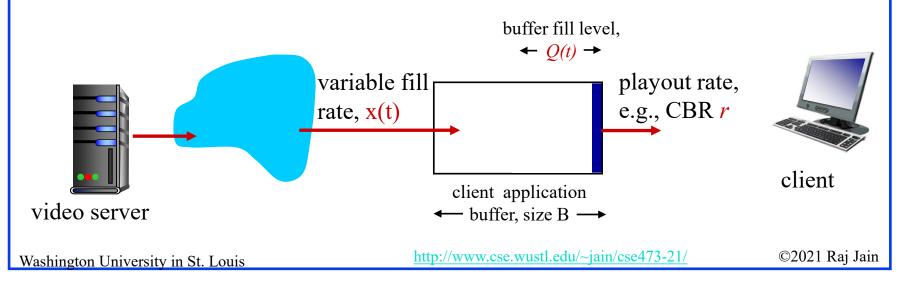
## **Multimedia Networking Applications**

#### Streaming Stored Multimedia


- > Stored Media: Fast rewind, pause, fast forward
- > Streaming: simultaneous play out and download
- Continuous play out: Delay jitter smoothed by playout buffer

#### □ Streaming Live Multimedia: IPTV and Internet Radio

- > No fast-forward
- > High data rate to large number of users  $\Rightarrow$  multicast or P2P,
- > Delay jitter controlled by caching,

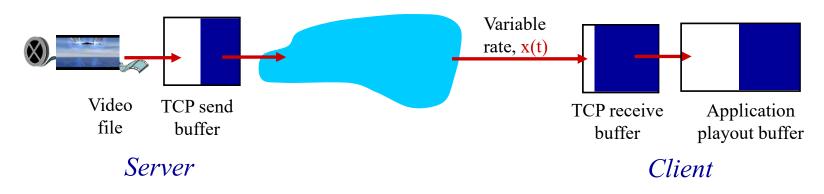

## Real-Time Interactive Multimedia: Internet Telephone, Video Conferencing

> Delay<400 ms.



## **Client-side Buffering**

- 1. Initial fill of buffer until playout begins at  $t_p$
- 2. Fill rate x(t) varies and playout rate r is constant
- 3. x < r: Buffer eventually empties causing freezing of video
- 4. x > r: buffer will not empty, Flow control to avoid overflow
- 5. *Tradeoff: Large initial playout delay*  $\Rightarrow$  *B*uffer starvation less likely but Larger delay until user begins watching




## **Streaming Using UDP**

- □ Server sends at rate appropriate for client
  - > Often: Send rate = Encoding rate = Constant
  - > Transmission rate can be oblivious to congestion levels
- □ Short playout delay (2-5 seconds) to remove network jitter
- Application level error recovery
- □ UDP may *not* go through firewalls

## **Streaming Using HTTP**

Multimedia file retrieved via HTTP GET
Send at maximum possible rate under TCP



- □ Fill rate fluctuates due to TCP congestion control, retransmissions (in-order delivery)
- □ Larger playout delay to smooth TCP delivery rate
- □ HTTP/TCP passes more easily through firewalls

#### Review

# Multimedia Applications

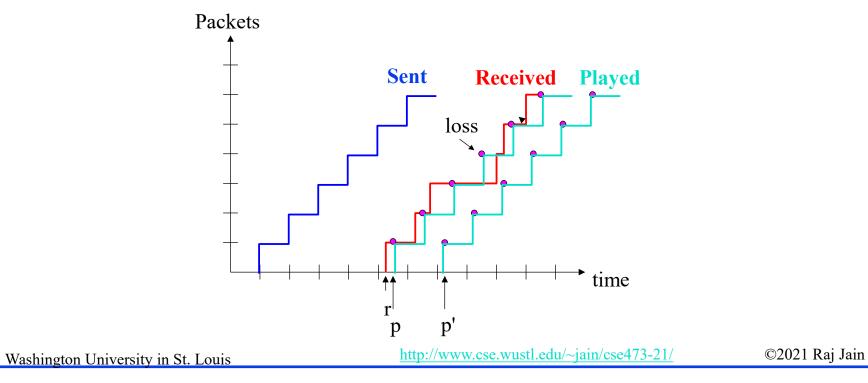
- 1. Audio is sampled, digitized, and compressed
- 2. Initial playout delay helps overcome the jitter in delay
- 3. UDP results in lower jitter but may not go through firewall
- 4. HTTP uses TCP and so the delay variation can be large

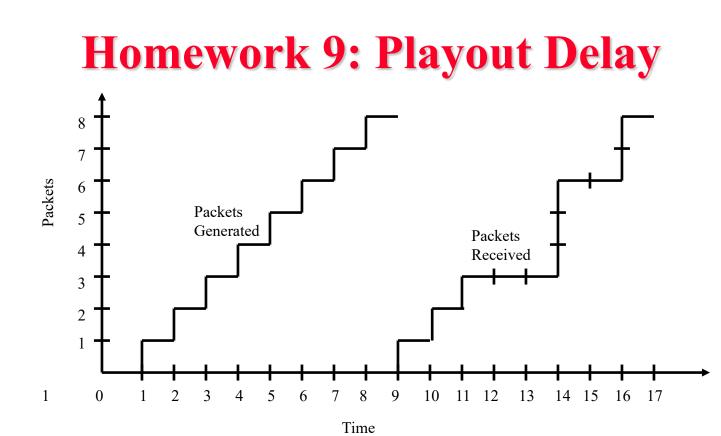


## **Voice Over IP**

- 1. VoIP Packet Losses
- 2. VoIP with Fixed Playout Delay
- 3. VoIP with Adaptive Playout Delay
- 4. Recovering From Packet Loss
- 5. Skype

## **Voice-over-IP (VoIP)**


- End-end-delay Requirement: needed to maintain "conversational" aspect
  - > Higher delays noticeable, impair interactivity
  - > <150 ms: good
  - > > 400 ms: bad
  - Includes application-level (packetization, playout), network delays
- □ Alternating talk spurts, silent periods.
  - > 64 kbps during talk spurt
  - > Packets generated only during talk spurts
  - > 20 ms chunks at 8 Kbytes/sec: 160 bytes of data
- □ Application sends a segment every 20 ms during talk spurt


## **VoIP Packet Losses**

- Network Loss: IP datagram lost due to network congestion (router buffer overflow)
- **Delay Loss:** IP datagram arrives too late for playout
  - > typical maximum tolerable delay: 400 ms
- □ Loss Tolerance: *P*acket loss rates up to 10% can be concealed

## **VoIP with Fixed Playout Delay**

- Example: Packets sent every 20 ms during talk spurt.
- □ First packet received at time r
- □ If playout begins at p, 4<sup>th</sup> packet will arrive too late
- □ If playout begins at p', all packets can be played on time





#### **Student Questions**

- □ [4 points] Consider the packet generation and reception sequence shown above. The first packet is generated at t=1 and is received at t=9.
- □ A. If Playout delay is zero and playout begins at t=9, which of the packets will not arrive in time? Show in a table.
- B. What is the minimum playout delay at the receiver that result in all of the first eight packets arriving in time for their playout?

Washington University in St. Louis

http://www.cse.wustl.edu/~jain/cse473-21/

## **Adaptive Playout Delay**

- Estimate network delay, adjust playout delay at beginning of each talk spurt
- Silent periods compressed and elongated
- Chunks still played out every 20 ms during talk spurt
- Adaptively estimate packet delay: Similar to TCP RTT estimate

## **Adaptive Playout Delay**

- $\Box$   $t_i$ =Sending time
- $\Box$   $r_i$  = Receiving time
- □ Measured delay sample =  $r_i$ - $t_i$
- □  $d_i$  = Average network delay

 $d_i = (1-a)d_{i-1} + a(r_i - t_i)$ 

 $\Box$   $v_i$  = Variation of the delay

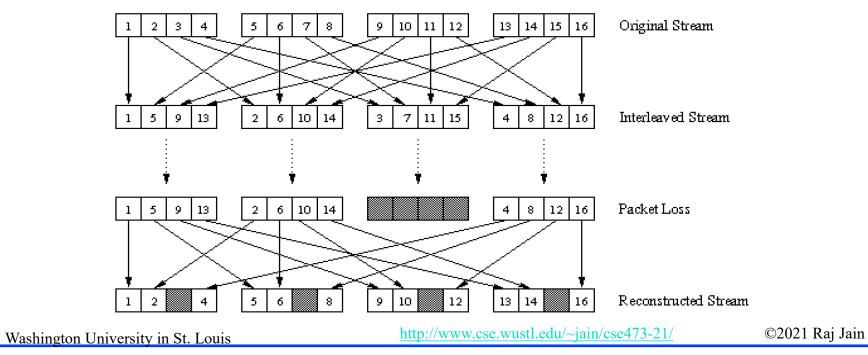
$$v_i = (1 - a)v_{i-1} + a|r_i - t_i - d_i|$$

 $\square$   $p_i$ = Playout time

$$p_i = t_i + d_i + K v_i$$

- $\Box Here K is a constant, say 4.$
- Sequence numbers and timestamps used to determine talk spurts and silence

Washington University in St. Louis

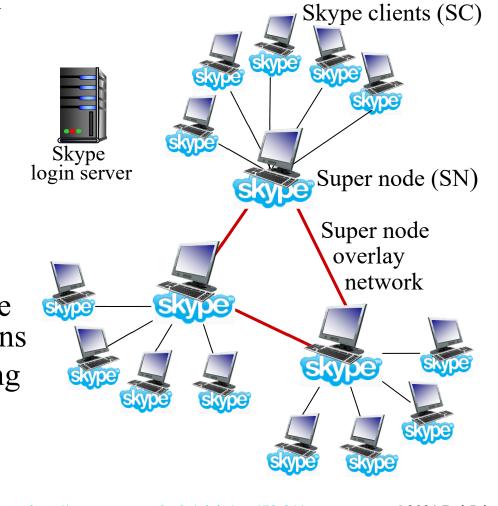

http://www.cse.wustl.edu/~jain/cse473-21/

©2021 Raj Jain

## **Recovering From Packet Loss**

#### **Given Service Forward Error Correction**

- □ Send n+1 packets in place of n packets
- Send a lower-resolution stream in addition
- □ Play out the old syllable
- $\square Busty Loss \Rightarrow Interleave audio/video frames$

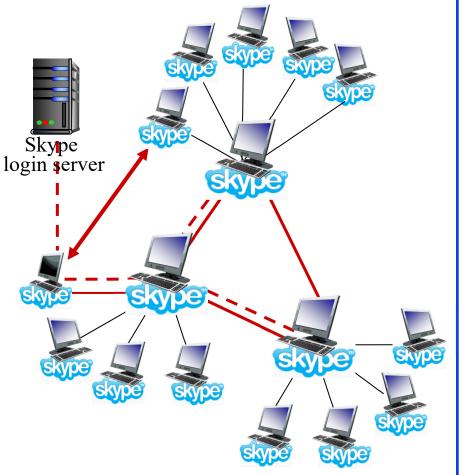



## **Voice-over-IP: Skype**

□ **Proprietary** 

application-layer protocol (inferred via reverse engineering)

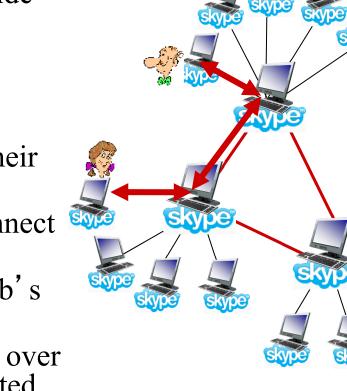
- Encrypted messages
- P2P: Media does not go through a central server
- Clients: Skype peers connect directly to each other for VoIP call
- Super Nodes (SN): Skype peers with special functions
- Overlay Network: Among SNs to locate clients
- □ Login server




#### **Student Questions**

## **P2P voice-over-IP: Skype**

Skype client operation:


- 1. Joins Skype network by contacting SN (IP address cached) using TCP
- 2. Logs-in: Username, password to centralized Skype login server
- 3. Obtains IP address for callee from SN, SN overlay
- 4. Initiate call directly to callee via SN



#### **Student Questions**

## **Skype: Super Nodes as Relays**

- Problem: both Alice, Bob are behind "NATs"
  - NAT prevents outside peer from initiating connection to inside peer
  - Inside peer *can* initiate connection to outside
- Relay solution: Alice, Bob maintain open connection to their SNs
  - Alice signals her SN to connect to Bob
  - Alice's SN connects to Bob's SN
  - » Bob's SN connects to Bob over open connection Bob initiated



#### **Student Questions**

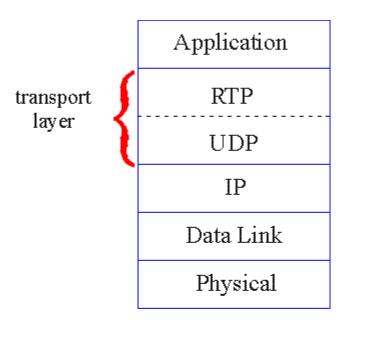
#### **Review**

## Voice over IP

- 1. Talk spurts are delayed to overcome jitter
- 2. Playout delay is estimated adaptively using mean and standard deviation
- 3. Forward error correction and interleaving is used to overcome losses and burst errors
- 4. Skype uses super nodes to help connect peers. A login server is used for authentication.
- 5. Skype nodes maintain an outgoing connection with the super nodes. These connections are used for incoming VoIP packets.

Ref: Section 9.3, Review Question R9-R11, Problems P6-P14






### **Protocols for Real-Time Applications**

- 1. Real-Time Transport Protocol (RTP)
- 2. Session Initiation Protocol (SIP)
- 3. H.323 Protocols

### **Real-Time Transport Protocol (RTP)**

- Common sublayer between applications and UDP
- Provides sequence numbers, timestamps, and other facilities
- Supports both unicast and multicast



## **RTP Packet Format**

| Marker | Payload<br>Type | •   |     | 5   | Miscellaneous<br>Fields |
|--------|-----------------|-----|-----|-----|-------------------------|
| 1b     | 7b              | 16b | 32b | 32b |                         |

- Marker indicates that the packet contains special data required by some applications
- □ SSRC = <u>Synchronization</u> <u>Source</u> = Stream #

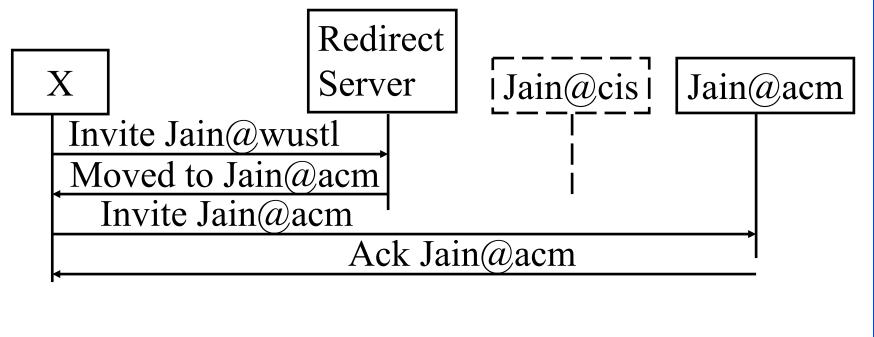
| Payload | Coding      | Rate     |  |
|---------|-------------|----------|--|
| Туре    |             |          |  |
| 0       | PCM mu-law  | 64 kbps  |  |
| 3       | GSM         | 13 kbps  |  |
| 7       | LPC         | 2.4 kbps |  |
| 26      | Motion JPEG |          |  |
| 31      | H.261       |          |  |
| 33      | MPEG2 video |          |  |
|         |             |          |  |

#### **Student Questions**

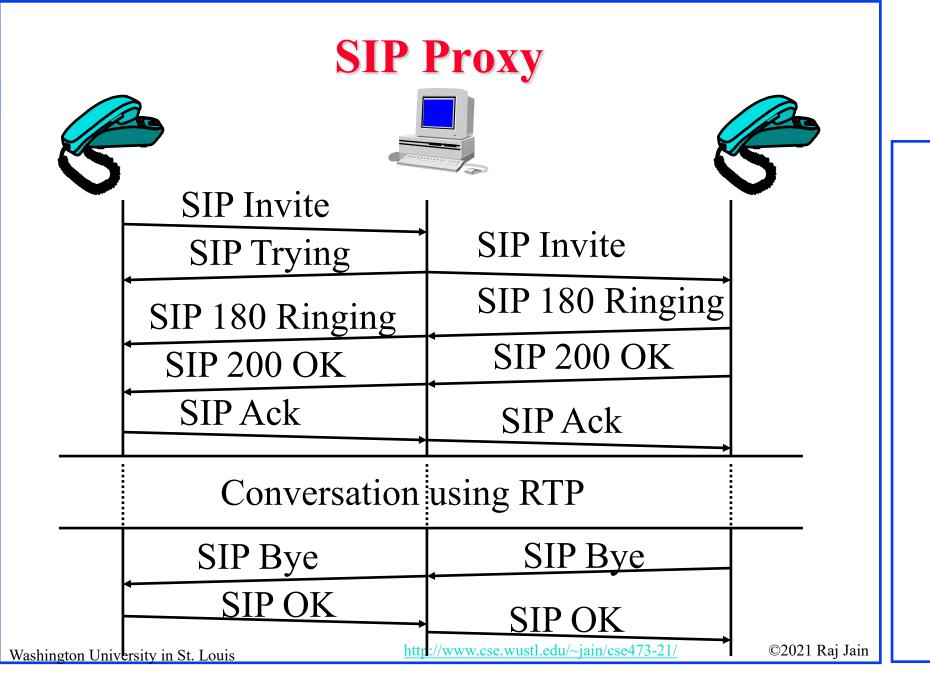
http://www.cse.wustl.edu/~jain/cse473-21/

## **Session Initiation Protocol (SIP)**

- Application level signaling protocol for voice and video conferencing over Internet
- Allows creating, modifying, terminating sessions with one or more participants
- Carries session descriptions (media types) for user capabilities negotiation
- □ Supports user location, call setup, call transfers
- Supports mobility by proxying and redirection


## SIP (Cont)

- SIP Uniform Resource Identifiers (URIs): Similar to email URLs sip:jain@wustl.edu sip:+1-614-292-3989:123@wustl.edu?subject=lecture
- □ SIP can use UDP or TCP
- □ SIP messages are sent to SIP servers:
  - Registrar: Clients register and tell their location to it
  - Location: Given name, returns possible addresses for a user. Like Directory service or DNS.
  - > Redirect: Returns current address to requesters
  - > Proxy: Intermediary. Acts like a server to internal client and like a client to external server


## **Locating using SIP**

- □ Allows locating a callee at different locations
- Callee registers different locations with Registrar
- □ SIP Messages: Ack, Bye, Invite, Register, Redirection, ...

**Student Questions** 



 $\underline{http://www.cse.wustl.edu/~jain/cse473-21/}$ 

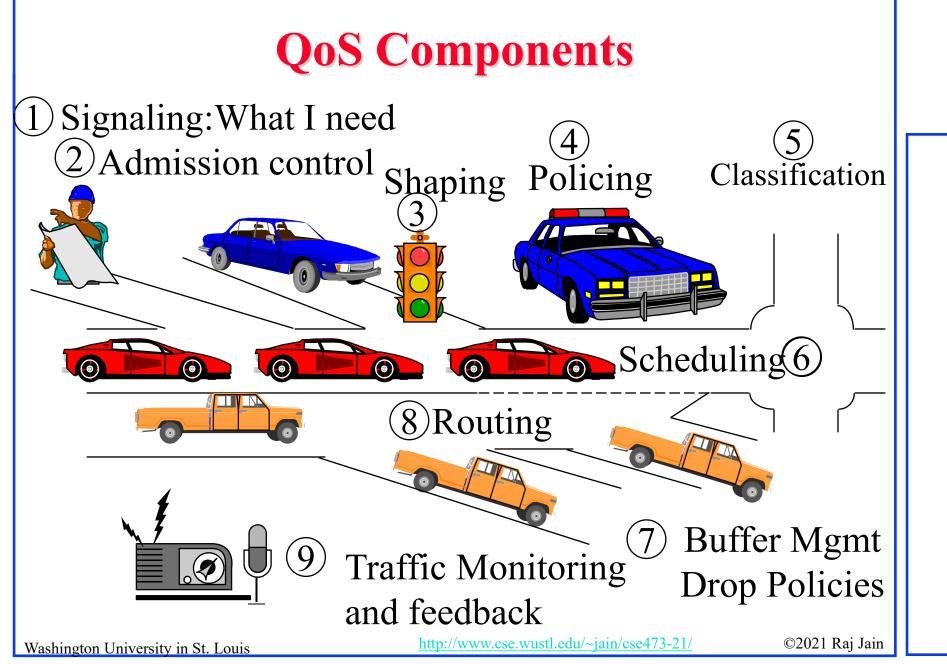


## **H.323 Protocols**

□ Multimedia over LANs, V1 (June 96), V2(Feb 98)

Provides component descriptions, signaling procedures, call control, system control, audio/video codecs, data protocols

| H.261       G.711, G.722,         H.263       G.723.1, G.728,         G.729       H.225.0         H.263       G.729         RAS       Signaling         Control       T.124         RAS       Signaling         Control       T.125         IDP       TCP | Video          | Audio                                     | Control and Management |       |  |  | Data |  |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|-------------------------------------------|------------------------|-------|--|--|------|--|--|
|                                                                                                                                                                                                                                                           | H.261<br>H.263 | G.711, G.722,<br>G.723.1, G.728,<br>G.729 | RTCP                   |       |  |  |      |  |  |
|                                                                                                                                                                                                                                                           |                | RTP                                       | X.                     | T.125 |  |  |      |  |  |
| T.123                                                                                                                                                                                                                                                     | UDP TCP        |                                           |                        |       |  |  |      |  |  |
| Network (IP)                                                                                                                                                                                                                                              | Network (IP)   |                                           |                        |       |  |  |      |  |  |
| Datalink (IEEE 802.3)                                                                                                                                                                                                                                     |                |                                           |                        |       |  |  |      |  |  |


#### Review

## Protocols for Real-Time Applications

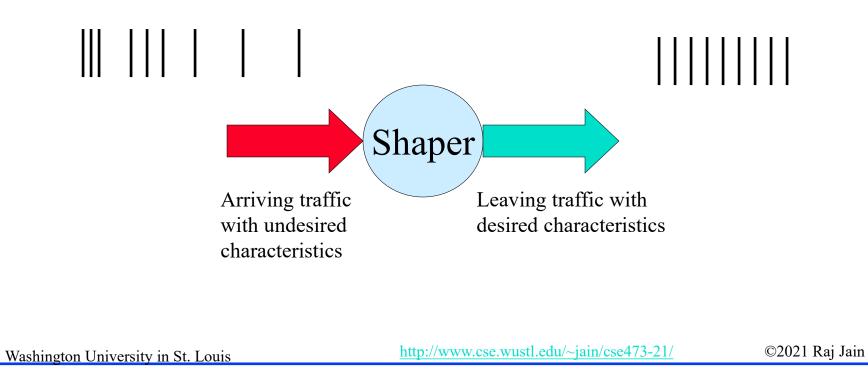
- 1. RTP is used to transmit multimedia over UDP
- 2. SIP is a signaling (control) protocol to establish multimedia connections
- 3. H.323 is a framework for a group of protocols used for multimedia

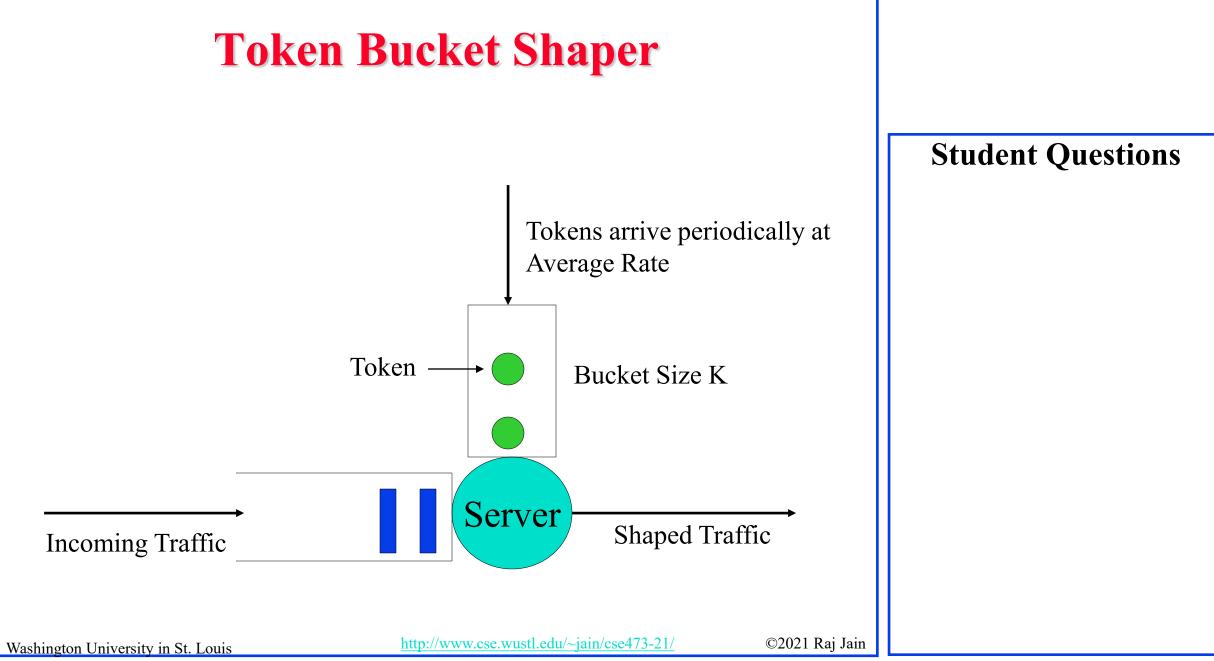
## **Dverview** Networking Support for Multimedia

- 1. QoS Components
- 2. Traffic Shaping
- 3. Token Bucket Shaper
- 4. Traffic Policing
- 5. Differentiated Services



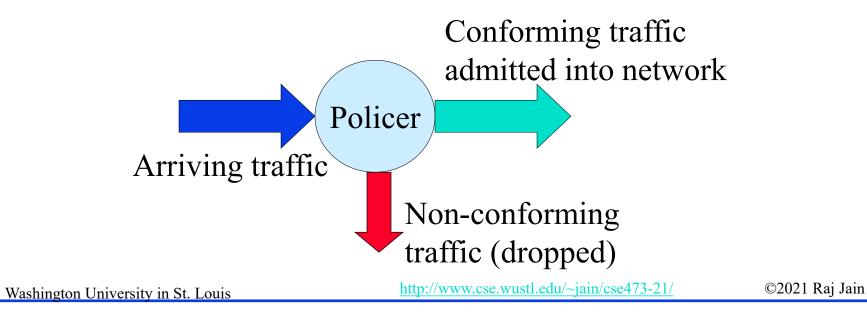
## **QoS Components (Cont)**


- **1. Signaling**: Users need to tell/negotiate their QoS requirements with the network
- 2. Admission Control: Network can deny requests that it can not meet
- 3. Shaping: Traffic is smoothed out so that it is easier to handle
- **4. Policing**: Ensuring that the users are sending at the rate they agreed to
- **5.** Marking/Classification: Packets are classified based on the source, destination, TCP ports (application)
- 6. Scheduling: Different flows get appropriate treatment
- 7. **Drop Policies**: Low priority packets are dropped.
- 8. Routing: Packets are sent over paths that can meet the QoS
- **9. Traffic Management:** Sources may be asked to reduce their rates to meet the loss rate and delay guarantees


Washington University in St. Louis

©2021 Raj Jain

## **Traffic Shaping**

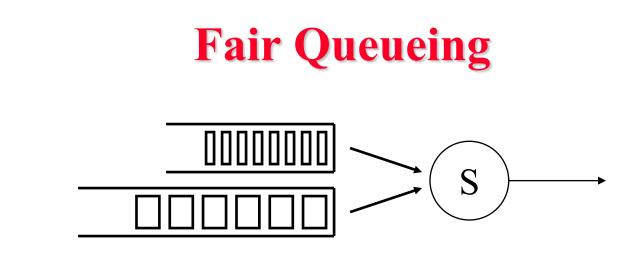

- Altering the traffic characteristics of a given flow is called traffic shaping
- The source must shape its traffic prior to sending it to network so it does not violate traffic contract



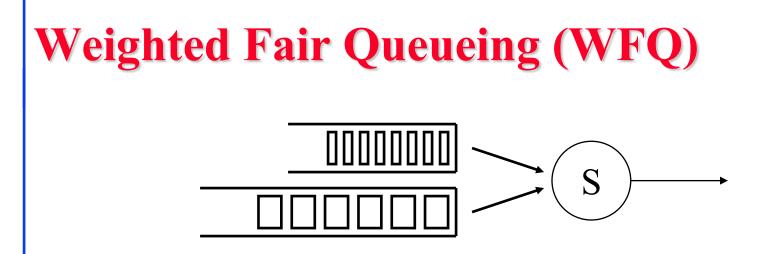


# **Traffic Policing**

- Users violating the traffic contract can jeopardise the QoS of other connections
- The network must protect well behaving users against such traffic violations
- Policing functions are deployed at the edge (entry) of the network




# **Peak Rate Policing with Leaky Bucket**


- Enforces sustained rate and maximum burst size
- □ Requires only one counter
  - counter is decremented, to a minimum of zero, at the avg rate
  - counter is incremented by one, to a maximum of a limiting value, for each packet arrival
- An arriving packet is non-conforming if counter is at its limit

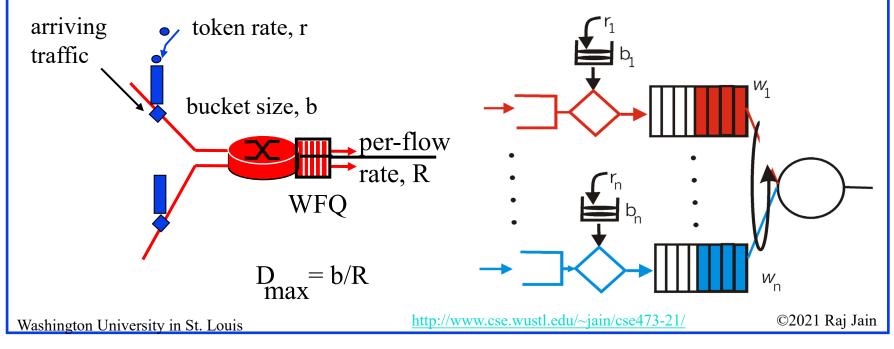
Incoming Packets
Rejected

Accepted

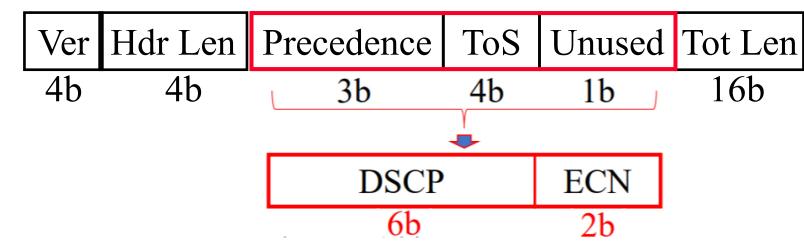


- □ Bit-level round robin but packet level scheduling
- Count the packet size and determine which packet would finish first. Serve that packet.
- □ Each flow gets the same number of bits/sec




- □ Fair queueing with different weight for each queue
- □ Flow 1 gets x bit/sec
- □ Flow 2 gets y bit/sec
- □ Flow n gets z bit/sec
- □ Here, x, y, z are weights

## **Maximum Delay with WFQ and Policing**


□ Max Delay  $d_{max} = b_i / (R w_i / \Sigma w_j)$ 

□ Here,

- $\Box$  b<sub>i</sub>=Burst size of ith flow
- □ R=Service Rate
- $\Box$  W<sub>i</sub>=Weight of ith flow

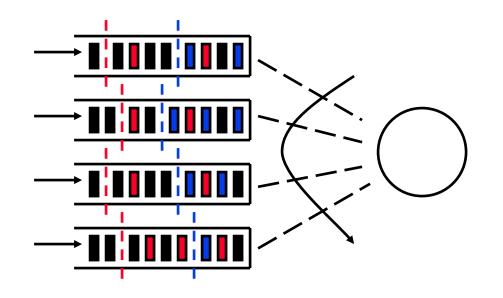


# **Differentiated Services**



- □ IPv4: 3-bit precedence + 4-bit ToS
- □ OSPF and integrated IS-IS can compute paths for each ToS
- Many vendors use IP precedence bits but the service varies ⇒ Need a standard ⇒ Differentiated Services
- $\Box$  Edge routers can mark the packets  $\Rightarrow$  Set ToS field
- Core routers use ToS field to provide "Per-Hop-Behavior"

## **Per-hop Behaviors**




- Externally Observable Forwarding Behavior
- $\Box$  x% of link bandwidth
- □ Minimum x% and fair share of excess bandwidth
- □ Priority relative to other PHBs

# **Expedited Forwarding**

- □ Also known as "Premium Service"
- □ Virtual leased line
- Guaranteed minimum service rate
- Policed: Arrival rate < Minimum Service Rate</p>
- Not affected by other data PHBs
   ⇒ Highest data priority (if priority queueing)
- **Code** point: 101 110

## **Assured Forwarding**



#### □ PHB Group

- □ Four Classes: No particular ordering
- □ Three drop preference per class

# **Assured Forwarding (Cont)**

- DS nodes SHOULD implement all 4 classes and MUST accept all 3 drop preferences. Can implement 2 drop preferences.
- □ Similar to nrt-VBR/ABR/GFR
- **Code Points:**

| Drop Prec. | Class 1 | Class 2 | Class 3 | Class 4 |
|------------|---------|---------|---------|---------|
| Low        | 010 000 | 011 000 | 100 000 | 101 000 |
| Medium     | 010 010 | 011 010 | 100 010 | 101 010 |
| High       | 010 100 | 011 100 | 100 100 | 101 100 |

□ Avoids 11x000 (used for network control)

Washington University in St. Louis

http://www.cse.wustl.edu/~jain/cse473-21/

©2021 Raj Jain

### **Network Support for Multimedia**

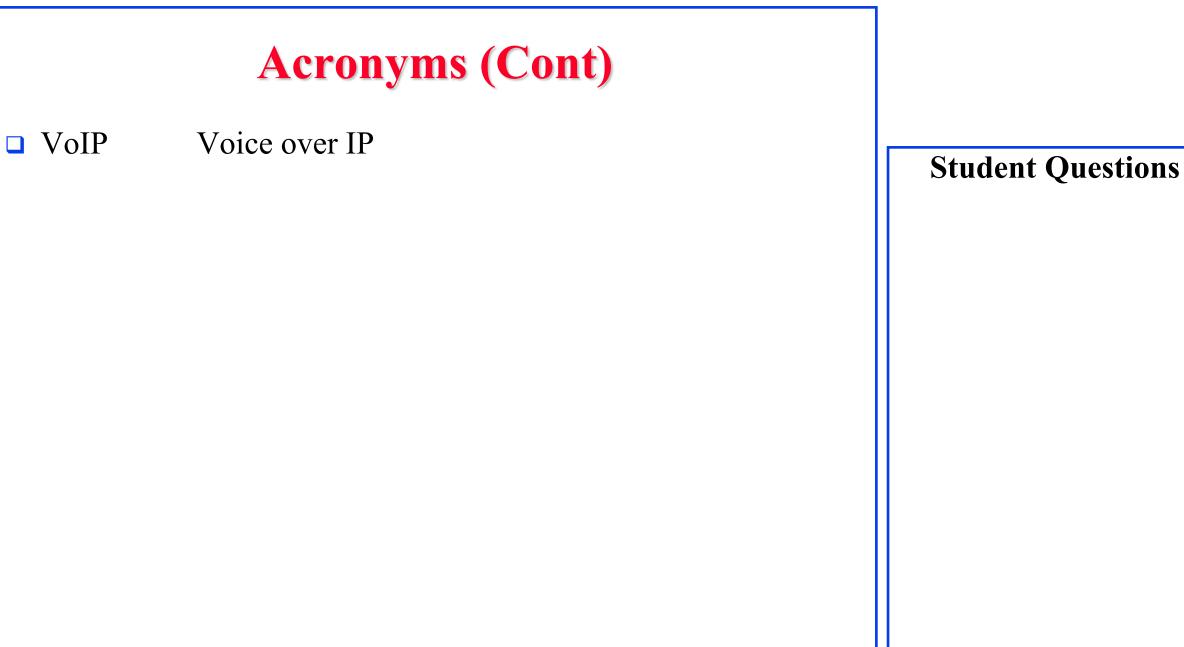
| Approach       | Granularity | Guarantee    | Mechanisms      | Complex | Deployed?  |
|----------------|-------------|--------------|-----------------|---------|------------|
| Making best    | All traffic | None or      | No network      | low     | everywhere |
| of best effort | treated     | soft         | support (all at |         |            |
| service        | equally     |              | application)    |         |            |
| Differentiated | Traffic     | None of      | Packet marker,  | med     | some       |
| service        | "class"     | soft         | scheduling,     |         |            |
|                |             |              | policing.       |         |            |
| Per-           | Per-        | Soft or hard | Packet marker,  | high    | little to  |
| connection     | connection  | after flow   | scheduling,     |         | none       |
| QoS            | flow        | admitted     | policing, call  |         |            |
|                |             |              | admission       |         |            |

## Review Network Support for Multimedia

- 1. QoS is obtained using several components including shaping, policing, differentiated services
- 2. Shaping is done by a token bucket
- 3. Policing is done using a leaky bucket
- 4. Differentiated services specifies per-hop behaviors
  - 1. Expedited Forwarding: min service rate
  - 2. Assured Forwarding: 4 classes, 3 drop precedence's

# Summary

- 1. Multimedia applications require bounded delay, delay jitter, and minimum throughput
- 2. RTP allows sequencing and time stamping
- 3. SIP allows parameter negotiation and location
- 4. QoS requires shaping, policing, scheduling, etc.
- 5. Diffserv allows different packets to get different service


## Acronyms

- □ ABR Available Bit Rate
- **CBR** Constant Bit Rate
  - CD Compact Disk
  - DNS Domain Name System
- DS DiffServe

- GFR Guaranteed Frame Rate
- □ HTTP HyperText Transfer Protocol
- □ IEEE Institution of Electrical and Electronics Engineers
  - IP Internet Protocol
- IPTV Internet Protocol Television
- IPv4Internet Protocol Version 4
- □ IS Integrated Services
- LAN Local Area Network
- NAT Network Address Translator
- OSPFOpen Shortest Path First
- PHBPer-Hop Behavior

# Acronyms (Cont)

- QoS Quality of Service
- **RAS** Registration, Admission, and Status
- **RTCP** Real-Time Transport Protocol Control Protocol
- **RTP** Real-Time Transport Protocol
- RTSP Real-Time Streaming Protocol
- **RTT** Round Trip Time
- □ SC Skype Clients
- Image: SIPSession Initiation Protocol
- □ SN Super Node
- **SSRC** Synchronization Source
- TCP Transmission Control Protocol
- **Tos** Type of Service
- UDPUser Datagram Protocol
- □ URI Uniform Resource Identifiers
- URLUniform Resource Locator
- VBRVariable Bit Rate





## **Related Modules**



CSE 567: The Art of Computer Systems Performance Analysis https://www.youtube.com/playlist?list=PLjGG94etKypJEKjNAa1n 1X0bWWNyZcof

CSE473S: Introduction to Computer Networks (Fall 2011), 뭐 https://www.youtube.com/playlist?list=PLjGG94etKypJWOSPMh8Azcgy5e\_10TiDw





CSE 570: Recent Advances in Networking (Spring 2013)

https://www.youtube.com/playlist?list=PLjGG94etKypLHyBN8mOgwJLHD2FFIMGq5

CSE571S: Network Security (Spring 2011),

https://www.youtube.com/playlist?list=PLjGG94etKypKvzfVtutHcPFJXumyyg93u



Video Podcasts of Prof. Raj Jain's Lectures, https://www.youtube.com/channel/UCN4-5wzNP9-ruOzQMs-8NUw

Washington University in St. Louis

http://www.cse.wustl.edu/~jain/cse473-21/

©2021 Raj Jain