
3-1
©2021 Raj Jainhttp://www.cse.wustl.edu/~jain/cse473-21/Washington University in St. Louis

Student Questions

Transport Layer:
TCP and UDP

Raj Jain
Washington University in Saint Louis

Saint Louis, MO 63130
Jain@wustl.edu

Audio/Video recordings of this lecture are available on-line at:
http://www.cse.wustl.edu/~jain/cse473-20/

http://www.cse.wustl.edu/%7Ejain/cse574-20/

3-2
©2021 Raj Jainhttp://www.cse.wustl.edu/~jain/cse473-21/Washington University in St. Louis

Student Questions
Overview

 Transport Layer Design Issues:
 Multiplexing/Demultiplexing
 Reliable Data Transfer
 Flow control
 Congestion control

 UDP
 TCP

 Header format, connection management, checksum
 Congestion Control

 Note: This class lecture is based on Chapter 3 of the textbook
(Kurose and Ross) and the figures provided by the authors.

http://www.cse.wustl.edu/%7Ejain/cse574-20/

3-3
©2021 Raj Jainhttp://www.cse.wustl.edu/~jain/cse473-21/Washington University in St. Louis

Student Questions

Transport Layer Design Issues

1. Transport Layer Functions
2. Multiplexing and Demultiplexing
3. Error Detection: Checksum
4. Flow Control
5. Efficiency Principle
6. Error Control: Retransmissions

Overview

http://www.cse.wustl.edu/%7Ejain/cse574-20/

3-4
©2021 Raj Jainhttp://www.cse.wustl.edu/~jain/cse473-21/Washington University in St. Louis

Student Questions

Transport Layer

 Transport = End-to-End Services
Services required at source and destination systems
Not required on intermediate hops

Application
Transport
Network
Datalink
Physical

Network
Datalink
Physical

Network
Datalink
Physical

Application
Transport
Network
Datalink
Physical

End System Router Router End System

http://www.cse.wustl.edu/%7Ejain/cse574-20/

3-5
©2021 Raj Jainhttp://www.cse.wustl.edu/~jain/cse473-21/Washington University in St. Louis

Student Questions

Transport Layer Functions
1. Multiplexing and demultiplexing: Among applications and

processes at end systems
2. Error detection: Bit errors
3. Loss detection: Lost packets due to buffer overflow at

intermediate systems (Sequence numbers and acks)
4. Error/loss recovery: Retransmissions
5. Flow control: Ensuring destination has buffers
6. Congestion Control: Ensuring network has capacity
Not all transports provide all functions

http://www.cse.wustl.edu/%7Ejain/cse574-20/

3-6
©2021 Raj Jainhttp://www.cse.wustl.edu/~jain/cse473-21/Washington University in St. Louis

Student Questions

Protocol Layers
 Top-Down approach

Internetwork

Host to
Network

IP

Application

Transport

HTTP

TCP

FTP SMTP

UDP

Physical

Ethernet Wi-FiPoint-to-Point

Coax Fiber Wireless

P2P DNS Skype

http://www.cse.wustl.edu/%7Ejain/cse574-20/

3-7
©2021 Raj Jainhttp://www.cse.wustl.edu/~jain/cse473-21/Washington University in St. Louis

Student Questions

Multiplexing and Demultiplexing
 Transport Ports and Network addresses are used to separate

flows

IP:128.3.4.1

Web

TCP

IP :209.3.1.1 IP :125.5.1.1

User 1 Server User 2

DNSApplication

Transport

Network

UDP

Web DNS Web DNS

TCP UDP TCP UDP
Port #

Protocol Type

SP:3009 DP:80 SA: 128.3.4.1 DA: 209.3.1.1

SP:80 DP:3009 SA:209.3.1.1 DA:128.3.4.1
Ref: http://en.wikipedia.org/wiki/List_of_TCP_and_UDP_port_numbers

http://www.cse.wustl.edu/%7Ejain/cse574-20/
http://en.wikipedia.org/wiki/List_of_TCP_and_UDP_port_numbers

3-8
©2021 Raj Jainhttp://www.cse.wustl.edu/~jain/cse473-21/Washington University in St. Louis

Student Questions

User Datagram Protocol (UDP)
 Connectionless end-to-end service
 Provides multiplexing via ports
 Error detection (Checksum) optional. Applies to pseudo-

header (same as TCP) and UDP segment. If not used, it is set to
zero.

 No error recovery (no acks). No retransmissions.
 Used by network management, DNS, Streamed multimedia

(Applications that are loss tolerant, delay sensitive, or have their
own reliability mechanisms)

Source
Port

Dest
Port

Check-
sumLength

16b 16b 16b Size in bits16b

http://www.cse.wustl.edu/%7Ejain/cse574-20/

3-9
©2021 Raj Jainhttp://www.cse.wustl.edu/~jain/cse473-21/Washington University in St. Louis

Student Questions

Error Detection: Checksum
 Cyclic Redundancy Check (CRC): Powerful but generally

requires hardware
 Checksum: Weak but easily done in software

 Example: 1's complement of 1’s complement sum of 16-bit
words with overflow wrapped around

At receiver the sum is all 1’s and the checksum is zero.

1 1 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0
1 1 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

1 1 0 1 1 1 0 1 1 1 0 1 1 1 0 1 1

1 1 0 1 1 1 0 1 1 1 0 1 1 1 1 0 0
1 0 1 0 0 0 1 0 0 0 1 0 0 0 0 1 1

wraparound

sum
checksum

http://www.cse.wustl.edu/%7Ejain/cse574-20/

3-10
©2021 Raj Jainhttp://www.cse.wustl.edu/~jain/cse473-21/Washington University in St. Louis

Student Questions

1’s Complement
2’s Complement: -ve of a number is complement+1
 1 = 0001 -1 = 1111
 2 = 0010 -2 = 1110
 0 = 0000 -0 = 0000
1’s complement: -ve of a number is it’s complement
 1 = 0001 -1 = 1110
 2 = 0010 -2 = 1101
 0 = 0000 -0 = 1111
2’s Complement sum: Add with carry. Drop the final carry, if any.
6-7 = 0110 + (-0111) = 0110 + 1001 = 1111 => -1
1’s complement sum: Add with carry. Add end-around carry back to sum
 6-7 = 0110 + (-0111) = 0110+1000 = 1110 => -1
Complement of 1’s complement sum: 0001
Checksum: At the transmitter: 0110 1000, append 0001
At the receiver: 0110 1000 0001 compute checksum of the full packet

= complement of sum = complement of 1111 = 0000
Ref: https://en.wikipedia.org/wiki/Ones%27_complement

http://www.cse.wustl.edu/%7Ejain/cse574-20/
https://en.wikipedia.org/wiki/Ones%27_complement

3-11
©2021 Raj Jainhttp://www.cse.wustl.edu/~jain/cse473-21/Washington University in St. Louis

Student Questions

Homework 3A: Checksum
[6 points] Consider the following two 16-bit words: ABCD 1234
A. What is the checksum as computed by the sender
B. Add your answer of Part A to the end of the packet and show

how the receiver will compute the checksum of the received
three 16-bit words and confirm that there are no errors.

C. Now assume that the first bit of the packet is flipped due to an
error. Repeat Part B at the receiver. Is the error detected?

http://www.cse.wustl.edu/%7Ejain/cse574-20/

3-12
©2021 Raj Jainhttp://www.cse.wustl.edu/~jain/cse473-21/Washington University in St. Louis

Student Questions

UDP: Summary
1. UDP provides flow multiplexing using port #s
2. UDP optionally provides error detection using the checksum
3. UDP does not have error or loss recovery mechanism

http://www.cse.wustl.edu/%7Ejain/cse574-20/

3-13
©2021 Raj Jainhttp://www.cse.wustl.edu/~jain/cse473-21/Washington University in St. Louis

Student Questions

Flow Control

 Flow Control Goals:
1. Sender does not flood the receiver,
2. Maximize throughput

Ack
Pkt 1

Ack
Pkt 2

Ack
Pkt 3

Sender Receiver Sender Receiver
Stop and Wait Flow Control Window Flow Control

Throughput = Throughput =
L/R

RTT+L/R
W L/R

RTT+L/R

Large RTT
⇒ Low Thruput

L/R
RTT L= Packet Length

R= Link bit Rate
W= Window

Ref: Textbook Section 3.4.2

http://www.cse.wustl.edu/%7Ejain/cse574-20/

3-14
©2021 Raj Jainhttp://www.cse.wustl.edu/~jain/cse473-21/Washington University in St. Louis

Student Questions

Sliding Window Diagram

http://www.cse.wustl.edu/%7Ejain/cse574-20/

3-15
©2021 Raj Jainhttp://www.cse.wustl.edu/~jain/cse473-21/Washington University in St. Louis

Student Questions

Stop and Wait Flow Control

First bit transmitted at time t = 0

Sender Receiver

RTT

Last bit transmitted, t = L / R

First bit arrives
Last bit arrives, send ACK

ACK arrives, send next
packet, t = RTT + L / R

Utilization U =
L / R

RTT + L / R
=

1
2α + 12tprop+tframe

tframe
=

Here, α = tprop/tframe

http://www.cse.wustl.edu/%7Ejain/cse574-20/

3-16
©2021 Raj Jainhttp://www.cse.wustl.edu/~jain/cse473-21/Washington University in St. Louis

Student Questions

Sliding Window Protocol Efficiency

Data

Ack

tframe

tprop

U=
W tframe

2tprop+tframe

=

W
2α+1

1 if W>2α+1

Here, α = tprop/tframe

W=1 ⇒ Stop and Wait

http://www.cse.wustl.edu/%7Ejain/cse574-20/

3-17
©2021 Raj Jainhttp://www.cse.wustl.edu/~jain/cse473-21/Washington University in St. Louis

Student Questions

Utilization: Examples
Satellite Link: One-way Propagation Delay = 270 ms

RTT=540 ms
Frame Size L = 500 Bytes = 4 kb
Data rate R = 56 kbps ⇒ tframe = L/R= 4kb/56kbps =0.071s = 71
ms
α = tprop/tframe = 270/71 = 3.8
U = 1/(2α+1) = 0.12

 Short Link: 1 km = 5 µs (Assuming Fiber 200 m/µs),
Rate=10 Mbps,
Frame=500 bytes ⇒ tframe= 4k/10M= 400 µs
α=tprop/tframe=5/400=0.012 ⇒ U=1/(2α+1)=0.98

Note: The textbook uses RTT in place of tprop and L/R for tframe

http://www.cse.wustl.edu/%7Ejain/cse574-20/

3-18
©2021 Raj Jainhttp://www.cse.wustl.edu/~jain/cse473-21/Washington University in St. Louis

Student Questions

Effect of Window Size

 Larger window is better for larger α
α

U

Longer Distance
Higher Speed

http://www.cse.wustl.edu/%7Ejain/cse574-20/

3-19
©2021 Raj Jainhttp://www.cse.wustl.edu/~jain/cse473-21/Washington University in St. Louis

Student Questions

Efficiency Principle
 For all protocols, the maximum utilization (efficiency) is a non-

increasing function of α.

α

Max
Utilization

Not Possible

Protocol 1
Protocol 2

Best
possible

α =
tprop

tframe

=
Distance/Speed of Signal
Bits Transmitted /Bit rate

=
Distance × Bit rate
Bits Transmitted × Speed of Signal

http://www.cse.wustl.edu/%7Ejain/cse574-20/

3-20
©2021 Raj Jainhttp://www.cse.wustl.edu/~jain/cse473-21/Washington University in St. Louis

Student Questions

Error Control: Retransmissions
 Error Control = Error Recovery
 Retransmit lost packets ⇒ Automatic Repeat reQuest (ARQ)

Ack
Pkt 1

Pkt 2

Ack
Pkt 3

Sender Receiver
Stop and Wait ARQ

Timeout

Timeout

×

×

Pkt 2

Pkt 3

http://www.cse.wustl.edu/%7Ejain/cse574-20/

3-21
©2021 Raj Jainhttp://www.cse.wustl.edu/~jain/cse473-21/Washington University in St. Louis

Student Questions

Go-Back-N ARQ

 Receiver does not cache out-of-order frames
 Sender has to go back and retransmit all frames after the lost

frame

RcvrSender

1

Nack 1 1

0
1

2

2

3

3

http://www.cse.wustl.edu/%7Ejain/cse574-20/

3-22
©2021 Raj Jainhttp://www.cse.wustl.edu/~jain/cse473-21/Washington University in St. Louis

Student Questions

Selective Repeat ARQ

 Receiver caches out-of-order frames
 Sender retransmits only the lost frame
 Also known as selective reject ARQ

RcvrSender

1

Nack 1 1

0
1

2

4

3

5

http://www.cse.wustl.edu/%7Ejain/cse574-20/

3-23
©2021 Raj Jainhttp://www.cse.wustl.edu/~jain/cse473-21/Washington University in St. Louis

Student Questions

Selective Repeat: Window Size

0
1
2
3
4
5
6
7

0
Ack

Sequence number space > 2 window size
Window size < 2n-1 with n bit sequence numbers

Timeout

3-bit sequence
W=8

http://www.cse.wustl.edu/%7Ejain/cse574-20/

3-24
©2021 Raj Jainhttp://www.cse.wustl.edu/~jain/cse473-21/Washington University in St. Louis

Student Questions

Performance: Maximum Utilization

 Stop and Wait Flow Control: U = 1/(1+2α)
 Window Flow Control:

 Stop and Wait ARQ: U = (1-P)/(1+2α)
 Go-back-N ARQ:

 Selective Repeat ARQ:

U =
1 W> 2α+1

W/(2α+1) W< 2α+1{

U =
(1-P)/(1+2αP) W> 2α+1

W(1-P)/[(2α+1)(1-P+WP)] W< 2α+1{
U =

(1-P) W> 2α+1

W(1-P)/(2α+1) W< 2α+1{

P = Probability of Loss

http://www.cse.wustl.edu/%7Ejain/cse574-20/

3-25
©2021 Raj Jainhttp://www.cse.wustl.edu/~jain/cse473-21/Washington University in St. Louis

Student Questions

Performance Comparison
1.0

0.8

0.6

0.4

0.2

0.0
0.1 1 10 100 1000

α

U
til

iz
at

io
n

Stop-and-wait

W= 127 Go-back-N

W=7 Go-back-N &
W= 7 Selective-repeat

W= 127 Selective-repeat

More bps or longer distance

http://www.cse.wustl.edu/%7Ejain/cse574-20/

3-26
©2021 Raj Jainhttp://www.cse.wustl.edu/~jain/cse473-21/Washington University in St. Louis

Student Questions

Transport Layer Design Issues

1. Multiplexing/demultiplexing by a combination of source and
destination IP addresses and port numbers.

2. Window flow control is better for long-distance or high-speed
networks

3. Longer distance or higher speed
⇒ Larger α ⇒ Larger window is better

4. Stop and and wait flow control is ok for short distance or low-
speed networks

5. Selective repeat is better than stop and wait ARQ
Only slightly better than go-back-N

http://www.cse.wustl.edu/%7Ejain/cse574-20/

3-27
©2021 Raj Jainhttp://www.cse.wustl.edu/~jain/cse473-21/Washington University in St. Louis

Student Questions

Homework 3B: Flow Control
[8 points] Problem 19 on page 302 of the textbook:
Consider the GBN protocol with a sender window size of 3 and a sequence number range

of 1,024. Suppose that at time t, the next in-order packet that the receiver is expecting
has a sequence number of k. Assume that the medium does not reorder messages.
Answer the following questions:

A. What are the possible sets of sequence numbers insdie the sender’s window at time t?
Justify your answer.

B. What are all possible values of the ACK field in all possible messages currently
propagating back to the sender at time t? Justify your answer.

Window Flow Control:
C. How big window (in number of packets) is required for the channel utilization to be

greater than 60% on a cross-country fiber link of 4000 km running at 20 Mbps using
1 kByte packets?

Efficiency Principle:
D. Ethernet V1 access protocol was designed to run at 10 Mbps over 2.5 Km using 1500

byte packets. This same protocol needs to be used at 100 Mbps at the same
efficiency. What distance can it cover if the frame size is not changed?

http://www.cse.wustl.edu/%7Ejain/cse574-20/

3-28
©2021 Raj Jainhttp://www.cse.wustl.edu/~jain/cse473-21/Washington University in St. Louis

Student Questions

TCP
1. TCP Header Format, Options, Checksum
2. TCP Connection Management
3. Round Trip Time Estimation
4. Principles of Congestion Control
5. Slow Start Congestion Control

Overview

http://www.cse.wustl.edu/%7Ejain/cse574-20/

3-29
©2021 Raj Jainhttp://www.cse.wustl.edu/~jain/cse473-21/Washington University in St. Louis

Student Questions

Key Features of TCP
 Point-to-Point: One sender, one receiver
 Byte Stream: No message boundaries.

TCP makes “segments”

 Maximum segment size (MSS)
 Connection Oriented: Handshake to

initialize states before data exchange
 Full Duplex: Bidirectional data flow in one connection
 Reliable: In-order byte delivery
 Flow control: To avoid receiver buffer overflow
 Congestion control: To avoid network router buffer overflow

Bytes Bytes
Segments

http://www.cse.wustl.edu/%7Ejain/cse574-20/

3-30
©2021 Raj Jainhttp://www.cse.wustl.edu/~jain/cse473-21/Washington University in St. Louis

Student Questions

TCP
 Transmission Control Protocol
 Key Services:

 Send: Please send when convenient
 Data stream push: Destination TCP, please deliver it

immediately to the receiving application.
⇒ Source TCP, please send it now.
Set on last packet of an application message.

 Urgent data signaling: Destination TCP, please give this
urgent data to the user out-of-band.
Generally used for CTRL-C.

http://www.cse.wustl.edu/%7Ejain/cse574-20/

3-31
©2021 Raj Jainhttp://www.cse.wustl.edu/~jain/cse473-21/Washington University in St. Louis

Student Questions

TCP Segment Format (Cont)

Source Port Dest Port
Seq No
Ack No

Data
Offset WindowResvd

Checksum Urgent
Options

Data

U A P R S F

16b 16b

Pad

http://www.cse.wustl.edu/%7Ejain/cse574-20/

3-32
©2021 Raj Jainhttp://www.cse.wustl.edu/~jain/cse473-21/Washington University in St. Louis

Student Questions

TCP Header Fields

 Source Port (16 bits): Identifies source user process
 Destination Port (16 bits)

21 = FTP, 23 = Telnet, 53 = DNS, 80 = HTTP, ...
 Sequence Number (32 bits): Sequence number of the first byte

in the segment. If SYN is present, this is the initial sequence
number (ISN) and the first data byte is ISN+1.

 Ack number (32 bits): Next byte expected
 Data offset (4 bits): Number of 32-bit words in the header
 Reserved (6 bits)

http://www.cse.wustl.edu/%7Ejain/cse574-20/

3-33
©2021 Raj Jainhttp://www.cse.wustl.edu/~jain/cse473-21/Washington University in St. Louis

Student Questions

TCP Header (Cont)
 Control (6 bits): Urgent pointer field significant,

Ack field significant,
Push function,

Reset the connection,
Synchronize the sequence numbers,
No more data from sender

 Window (16 bits):
Will accept [Ack] to [Ack]+[window]-1

ACKURG PSH RST SYN FIN

http://www.cse.wustl.edu/%7Ejain/cse574-20/

3-34
©2021 Raj Jainhttp://www.cse.wustl.edu/~jain/cse473-21/Washington University in St. Louis

Student Questions

TCP Header (Cont)
 Checksum (16 bits): covers the segment plus a pseudo header.

Includes the following fields from IP header: source and dest
adr, protocol, segment length. Protects from IP misdelivery.

 Urgent pointer (16 bits): Points to the byte following urgent
data. Lets receiver know how much data it should deliver right
away out-of-band.

 Options (variable):
Max segment size (does not include TCP header, default 536
bytes), Window scale factor, Selective Ack permitted,
Timestamp, No-Op, End-of-options

http://www.cse.wustl.edu/%7Ejain/cse574-20/

3-35
©2021 Raj Jainhttp://www.cse.wustl.edu/~jain/cse473-21/Washington University in St. Louis

Student Questions

TCP Options

 End of Options: Stop looking for further option
 No-op: Ignore this byte. Used to align the next option on a 4-

byte word boundary
 Max Segment Size (MSS): Does not include TCP header

Kind Length Meaning
0 1 End of Valid options in header
1 1 No-op
2 4 Maximum Segment Size
3 3 Window Scale Factor
8 10 Timestamp

http://www.cse.wustl.edu/%7Ejain/cse574-20/

3-36
©2021 Raj Jainhttp://www.cse.wustl.edu/~jain/cse473-21/Washington University in St. Louis

Student Questions

TCP Checksum
 Checksum is the 16-bit one's complement of

the one's complement sum of a pseudo header of information
from the IP header, the TCP header, and the data, padded with
zero octets at the end (if necessary) to make a multiple of two
octets.

 Checksum field is filled with zeros initially
 TCP length (in octet) is not transmitted but used in

calculations.
 Efficient implementation in RFC1071.

Source Adr Dest. Adr Zeros Protocol TCP Length

TCP Header TCP data
32 32 8 8 16

http://www.cse.wustl.edu/%7Ejain/cse574-20/

3-37
©2021 Raj Jainhttp://www.cse.wustl.edu/~jain/cse473-21/Washington University in St. Louis

Student Questions

TCP Connection Management
 Connection Establishment

 Three way handshake
 SYN flag set

⇒ Request for connection

q Connection Termination
q Close with FIN flag set
q Abort

SYN, ISN = 100

SYN, ISN = 350, Ack 101

Ack 351
FIN

Ack

Ack

FIN

http://www.cse.wustl.edu/%7Ejain/cse574-20/

3-38
©2021 Raj Jainhttp://www.cse.wustl.edu/~jain/cse473-21/Washington University in St. Louis

Student Questions

Example RTT estimation:
RTT: gaia.cs.umass.edu to fantasia.eurecom.fr

100

150

200

250

300

350

1 8 15 22 29 36 43 50 57 64 71 78 85 92 99 106
time (seconnds)

RT
T

(m
ill

ise
co

nd
s)

SampleRTT Estimated RTT

http://www.cse.wustl.edu/%7Ejain/cse574-20/

3-39
©2021 Raj Jainhttp://www.cse.wustl.edu/~jain/cse473-21/Washington University in St. Louis

Student Questions

Round Trip Time Estimation
 Measured round trip time (SampleRTT) is very random.
 EstimatedRTT=(1- α)EstimatedRTT+α SampleRTT
 DevRTT = (1-β)DevRTT+ β |SampleRTT-EstmatedRTT|
 TimeoutInterval=EstimatedRTT+4 DevRTT

Value

Probability
Very low probability
of false timeout

http://www.cse.wustl.edu/%7Ejain/cse574-20/

3-40
©2021 Raj Jainhttp://www.cse.wustl.edu/~jain/cse473-21/Washington University in St. Louis

Student Questions

Our Research on Congestion Control

 Early 1980s Digital Equipment Corporation (DEC) introduced Ethernet
products

 Noticed that throughput goes down with a higher-speed link in middle
(because no congestion mechanisms in TCP)

 Results:
1. Timeout ⇒ Congestion

⇒ Reduce the TCP window to one on a timeout [Jain 1986]
2. Routers should set a bit when congested (DECbit).

[Jain, Ramakrishnan, Chiu 1988]
3. Introduced the term “Congestion Avoidance”
4. Additive increase and multiplicative decrease (AIMD principle)

[Chiu and Jain 1989]
 There were presented to IETF in 1986.

⇒ Slow-start based on Timeout and AIMD [Van Jacobson 1988]

1Mbps 1Mbps 1Mbps
Time=6 minutes

1Mbps 10Mbps 1Mbps
Time=6 hours Bit in header

http://www.cse.wustl.edu/%7Ejain/cse574-20/

3-41
©2021 Raj Jainhttp://www.cse.wustl.edu/~jain/cse473-21/Washington University in St. Louis

Student Questions

Slow Start Congestion Control
 Window = Flow control avoids receiver overrun
 Need congestion control to avoid network overrun
 The sender maintains two windows:

Credits from the receiver
Congestion window from the network
Congestion window is always less than the receiver window

 Starts with a congestion window (CWND) of 1 max segment
size (MSS)
⇒ Do not disturb existing connections too much.

 Increase CWND by 1 MSS every time an ack is received
 Assume CWND is in bytes

http://www.cse.wustl.edu/%7Ejain/cse574-20/

3-42
©2021 Raj Jainhttp://www.cse.wustl.edu/~jain/cse473-21/Washington University in St. Louis

Student Questions

Slow Start (Cont)
 If segments lost, remember slow start threshold (SSThresh) to

CWND/2
Set CWND to 1 MSS
Increment by 1MSS per ack until SSThresh
Increment by 1 MSS*MSS/CWND per ack afterwards

Time

Congestion
Window
CWND

Receiver Window
Idle

Interval

Timeout

1MSS

SSThresh

http://www.cse.wustl.edu/%7Ejain/cse574-20/

3-43
©2021 Raj Jainhttp://www.cse.wustl.edu/~jain/cse473-21/Washington University in St. Louis

Student Questions

Slow Start (Cont)
 At the beginning, SSThresh = Receiver window
 After a long idle period (exceeding one round-trip time), reset

the congestion window to one.
 If CWND is W MSS, W acks are received in one round trip.
 Below SSThresh, CWND is increased by 1MSS on every ack

⇒ CWND increases to 2W MSS in one round trip
⇒ CWND increases exponentially with time
Exponential growth phase is also known as “Slow start” phase

 Above SSThresh, CWND is increased by MSS/CWND on
every ack
⇒ CWND increases by 1 MSS in one round trip
⇒ CWND increases linearly with time
The linear growth phase is known as “congestion avoidance”
phase

http://www.cse.wustl.edu/%7Ejain/cse574-20/

3-44
©2021 Raj Jainhttp://www.cse.wustl.edu/~jain/cse473-21/Washington University in St. Louis

Student Questions

AIMD Principle
 Additive Increase, Multiplicative

Decrease
 W1+W2 = Capacity

⇒ Efficiency,
W1=W2 ⇒ Fairness

 (W1,W2) to (W1+∆W,W2+∆W)
⇒ Linear increase (45° line)

 (W1,W2) to (kW1,kW2)
⇒ Multiplicative decrease
(line through origin)

CapacityW1

C

FairEfficient

Ref: D. Chiu and Raj Jain, "Analysis of the Increase/Decrease Algorithms for
Congestion Avoidance in Computer Networks," Journal of Computer
Networks and ISDN, Vol. 17, No. 1, June 1989, pp. 1-14,
http://www.cse.wustl.edu/~jain/papers/cong_av.htm

http://www.cse.wustl.edu/%7Ejain/cse574-20/
http://www.cse.wustl.edu/%7Ejain/papers/cong_av.htm

3-45
©2021 Raj Jainhttp://www.cse.wustl.edu/~jain/cse473-21/Washington University in St. Louis

Student Questions

Fast Retransmit
 Optional – implemented in TCP Reno

(Earlier version was TCP Tahoe)
 Duplicate Ack indicates a lost/out-of-order segment
 On receiving 3 duplicate acks (4th ack for the same segment):

 Enter Fast Recovery mode
 Retransmit missing segment
 Set SSThresh=CWND/2
 Set CWND=SSThresh+3 MSS (Note: CWND is inflated)

 Every subsequent duplicate ack: CWND=CWND+1MSS
 When a new ack (not a duplicate ack) is received

 Exit fast recovery
 Set CWND=SSTHRESH (Note: CWND is deflated back)

http://www.cse.wustl.edu/%7Ejain/cse574-20/

3-46
©2021 Raj Jainhttp://www.cse.wustl.edu/~jain/cse473-21/Washington University in St. Louis

Student Questions

TCP Congestion Control State Diagram

Slow
Start

Congestion
Avoidance

Fast
Recovery

Dup Ack
DupAckCount++

CWND<SSThresh, New Ack
CWND=CWND+MSS
DupAckCount=0
Transmit new segment as allowed

CWND=1MSS
SSThresh=Rcvr Win/2
DupAckCount=0
Transmit one segment

DupAckCount==3
SSThresh=CWND/2
Cwnd=ssthresh+3MSS
Retransmit missing
segment

Timeout
SSTthresh=CWND/2
CWND=1MSS
DupAckCount=0
Retransmit missing
segment

Dup Ack
DupAckCount++

Dup Ack
CWND=CWND+1MSS

Transmit new segments as allowed

DupAckCount==3
SSThresh=CWND/2
Cwnd=ssthresh+3MSS
Retransmit missing
segment

New Ack
CWND=CWND+MSS*MSS/CWND
DupAckCount=0
Transmit new segment as allowed

Idle Idle

Idle

Note 2: The state
transition diagram in the
textbook does not show
Idle state

CWND>SSThresh

Note 1: CWND
is decreased
from SSThresh
+ n MSS to
SSThresh on
first new ack

http://www.cse.wustl.edu/%7Ejain/cse574-20/

3-47
©2021 Raj Jainhttp://www.cse.wustl.edu/~jain/cse473-21/Washington University in St. Louis

Student Questions

Homework 3C: Slow Start
 [22 points] Consider Figure below. Assuming TCP Reno

is the protocol experiencing the behavior shown above,
answer the following questions. In all cases, you should
provide a short discussion justifying your answer.

0

5

10

15

20

25

30

35

40

45

0 5 10 15 20 25 30

Reno

CWND
Round Reno

1 1
2 2
3 4
4 8
5 16
6 32
7 33
8 34
9 35

10 36
11 37
12 38
13 39
14 40
15 41
16 42
17 24
18 21
19 22
20 23
21 24
22 25
23 1
24 2
25 4
26 8

http://www.cse.wustl.edu/%7Ejain/cse574-20/

3-48
©2021 Raj Jainhttp://www.cse.wustl.edu/~jain/cse473-21/Washington University in St. Louis

Student Questions

Homework 3C (Cont)
 A. Identify the interval of time when TCP slow start is

operating.
 B. Identify the intervals of time when TCP congestion

avoidance is operating.
 C. After the 16th transmission round, is segment loss detected by

a triple duplicate ACK or by a timeout?
 D. After the 22nd transmission round, is segment loss detected

by a triple duplicate ACK or by a timeout?
 E. What is the initial value of ssthresh at the first transmission

round?
 F .What is the value of ssthresh at the 18th transmission round?
 G. What is the value of ssthresh at the 24th transmission round?

http://www.cse.wustl.edu/%7Ejain/cse574-20/

3-49
©2021 Raj Jainhttp://www.cse.wustl.edu/~jain/cse473-21/Washington University in St. Louis

Student Questions

Homework 3C (Cont)
 H. During what transmission round is the 70th segment sent?
 I. Assuming a packet loss is detected after the 26th round by the

receipt of a triple duplicate ACK, what will be the values of the
congestion window size and of ssthresh?

 J. Suppose TCP Tahoe is used (instead of TCP Reno), and
assume that triple duplicate ACKs are received at the 16th

round. What are the ssthresh and the congestion window size at
the 19th round? (Hint: You need to calculate CWND in 17-22nd

rounds first. It will be different that that shown for Reno.)
 K. Again suppose TCP Tahoe is used, and there is a timeout

event at the end of 22nd round. How many packets have been
sent out from 17th round till 22nd round, inclusive?

http://www.cse.wustl.edu/%7Ejain/cse574-20/

3-50
©2021 Raj Jainhttp://www.cse.wustl.edu/~jain/cse473-21/Washington University in St. Louis

Student Questions

TCP Average Throughput
 Average Throughput =

 Here, P = Probability of Packet loss

 Note 1: The formula is an approximation which does not apply
at P=0 or P=1. At P=1, the throughput is zero. At P=0, the
throughput is min{1, (Receiver Window/RTT)}

 Note 1: The textbook uses L for probability of packet loss but it
was used earlier for length of packets.

1.22 MSS

RTT √P

http://www.cse.wustl.edu/%7Ejain/cse574-20/

3-51
©2021 Raj Jainhttp://www.cse.wustl.edu/~jain/cse473-21/Washington University in St. Louis

Student Questions

Explicit Congestion Notification (ECN)
 Explicit congestion notification (ECN) is based on our DECbit

research. Two bits in IP Header:
 00: Transport is not capable of ECN (e.g., UDP)
 01: Transport is capable of ECN
 10: Transport is capable of ECN
 11: Congestion experienced (CE)

 When a router encounters congestion, instead of dropping the
datagram, it marks the two bits as “11” congestion experienced

Transport

Network
Datalink

Transport

Network
DatalinkECN←11

ECE←1

CWR←1

Application Application

http://www.cse.wustl.edu/%7Ejain/cse574-20/

3-52
©2021 Raj Jainhttp://www.cse.wustl.edu/~jain/cse473-21/Washington University in St. Louis

Student Questions

ECN (Cont)
 ECN uses two bits in TCP header: ECE and CWR
 On receiving “CE” code point, the receiver sends “ECN Echo

(ECE)” flag in the TCP header
 On seeing the ECE flag, the source reduces its congestion

window, and sets “Congestion Window Reduced (CWR) flag in
outgoing segment

 On receiving “CWR” flag, the receiver, stops setting ECE bit

Transport

Network
Datalink

Transport

Network
DatalinkECN←11

ECE←1

CWR←1

Application Application

Ref: https://en.wikipedia.org/wiki/Explicit_Congestion_Notification

http://www.cse.wustl.edu/%7Ejain/cse574-20/
https://en.wikipedia.org/wiki/Explicit_Congestion_Notification

3-53
©2021 Raj Jainhttp://www.cse.wustl.edu/~jain/cse473-21/Washington University in St. Louis

Student Questions

TCP: Summary
1. TCP uses port numbers for multiplexing
2. TCP provides reliable full-duplex connections.
3. TCP is stream based and has window flow control
4. Slow-start congestion control works on timeout
5. Explicit congestion notification works using ECN bits

http://www.cse.wustl.edu/%7Ejain/cse574-20/

3-54
©2021 Raj Jainhttp://www.cse.wustl.edu/~jain/cse473-21/Washington University in St. Louis

Student Questions

Summary

1. Multiplexing/demultiplexing by a combination of source and
destination IP addresses and port numbers.

2. Longer distance or higher speed
⇒ Larger α ⇒ Larger window is better

3. Window flow control is better for long-distance or high-speed
networks

4. UDP is connectionless and simple.
No flow/error control. Has error detection.

5. TCP provides full-duplex connections with
flow/error/congestion control.

http://www.cse.wustl.edu/%7Ejain/cse574-20/

3-55
©2021 Raj Jainhttp://www.cse.wustl.edu/~jain/cse473-21/Washington University in St. Louis

Student Questions

Lab 3: Reliable Transport Protocol
[60 points] Overview
In this laboratory programming assignment, you will be writing the sending and receiving transport-level code for

implementing a simple reliable data transfer protocol. There are two versions of this lab, the Alternating-Bit-
Protocol version and the Go-Back-N version. This lab should be fun since your implementation will differ
very little from what would be required in a real-world situation.

Since you probably don't have standalone machines (with an OS that you can modify), your code will have to
execute in a simulated hardware/software environment. However, the programming interface provided to your
routines, i.e., the code that would call your entities from above and from below is very close to what is done
in an actual UNIX environment. (Indeed, the software interfaces described in this programming assignment
are much more realistic that the infinite loop senders and receivers that many texts describe).
Stopping/starting of timers are also simulated, and timer interrupts will cause your timer handling routine to
be activated.

The routines you will write
The procedures you will write are for the sending entity (A) and the receiving entity (B). Only unidirectional

transfer of data (from A to B) is required. Of course, the B side will have to send packets to A to acknowledge
(positively or negatively) receipt of data. Your routines are to be implemented in the form of the procedures
described below. These procedures will be called by (and will call) procedures that I have written which
emulate a network environment. The overall structure of the environment is shown in Figure Lab.3-1
(structure of the emulated environment):

The unit of data passed between the upper layers and your protocols is a message, which is declared as:
struct msg { char data[20];
};
This declaration, and all other data structure and emulator routines, as well as stub routines (i.e., those you are to

complete) are in the file, prog2.c (http://gaia.cs.umass.edu/kurose/transport/prog2.c). Your sending entity
will thus receive data in 20-byte chunks from layer5; your receiving entity should deliver 20-byte chunks of
correctly received data to layer5 at the receiving side.

http://www.cse.wustl.edu/%7Ejain/cse574-20/
http://gaia.cs.umass.edu/kurose/transport/prog2.c

3-56
©2021 Raj Jainhttp://www.cse.wustl.edu/~jain/cse473-21/Washington University in St. Louis

Student Questions

Lab 3 (Cont)

Figure Lab.3-1

http://www.cse.wustl.edu/%7Ejain/cse574-20/

3-57
©2021 Raj Jainhttp://www.cse.wustl.edu/~jain/cse473-21/Washington University in St. Louis

Student Questions

Lab 3 (Cont)
The unit of data passed between your routines and the network layer is the packet, which is declared as:
struct pkt { int seqnum; int acknum;
int checksum; char payload[20];
};
Your routines will fill in the payload field from the message data passed down from layer5. The other packet fields

will be used by your protocols to insure reliable delivery, as we've seen in class.
The routines you will write are detailed below. As noted above, such procedures in real-life would be part of the

operating system, and would be called by other procedures in the operating system.
A_output(message), where message is a structure of type msg, containing data to be sent to the B-side. This

routine will be called whenever the upper layer at the sending side (A) has a message to send. It is the job of
your protocol to insure that the data in such a message is delivered in-order, and correctly, to the receiving
side upper layer.

A_input(packet), where packet is a structure of type pkt. This routine will be called whenever a packet sent from
the B-side (i.e., as a result of a tolayer3() being done by a B-side procedure) arrives at the A-side. packet is
the (possibly corrupted) packet sent from the B-side.

A_timerinterrupt() This routine will be called when A's timer expires (thus generating a timer interrupt). You'll
probably want to use this routine to control the retransmission of packets. See starttimer() and stoptimer()
below for how the timer is started and stopped.

A_init() This routine will be called once, before any of your other A-side routines are called. It can be used to do
any required initialization.

B_input(packet),where packet is a structure of type pkt. This routine will be called whenever a packet sent from
the A-side (i.e., as a result of a tolayer3() being done by a A-side procedure) arrives at the B-side. packet is
the (possibly corrupted) packet sent from the A-side.

B_init() This routine will be called once, before any of your other B-side routines are called. It can be used to do
any required initialization.

http://www.cse.wustl.edu/%7Ejain/cse574-20/

3-58
©2021 Raj Jainhttp://www.cse.wustl.edu/~jain/cse473-21/Washington University in St. Louis

Student Questions

Lab 3 (Cont)
Software Interfaces
The procedures described above are the ones that you will write. I have written the following routines which can

be called by your routines:
starttimer(calling_entity,increment), where calling_entity is either 0 (for starting the A-side timer) or 1 (for

starting the B side timer), and increment is a float value indicating the amount of time that will pass before the
timer interrupts. A's timer should only be started (or stopped) by A-side routines, and similarly for the B-side
timer. To give you an idea of the appropriate increment value to use: a packet sent into the network takes an
average of 5 time units to arrive at the other side when there are no other messages in the medium.

stoptimer(calling_entity), where calling_entity is either 0 (for stopping the A-side timer) or 1 (for stopping the B
side timer).

tolayer3(calling_entity,packet), where calling_entity is either 0 (for the A-side send) or 1 (for the B side send),
and packet is a structure of type pkt. Calling this routine will cause the packet to be sent into the network,
destined for the other entity.

tolayer5(calling_entity,message), where calling_entity is either 0 (for A-side delivery to layer 5) or 1 (for B-side
delivery to layer 5), and message is a structure of type msg. With unidirectional data transfer, you would only
be calling this with calling_entity equal to 1 (delivery to the B-side). Calling this routine will cause data to be
passed up to layer 5.

http://www.cse.wustl.edu/%7Ejain/cse574-20/

3-59
©2021 Raj Jainhttp://www.cse.wustl.edu/~jain/cse473-21/Washington University in St. Louis

Student Questions

Lab 3 (Cont)
The simulated network environment
A call to procedure tolayer3() sends packets into the medium (i.e., into the network layer). Your procedures
A_input() and B_input() are called when a packet is to be delivered from the medium to your protocol layer.
The medium is capable of corrupting and losing packets. It will not reorder packets. When you compile your

procedures and my procedures together and run the resulting program, you will be asked to specify values
regarding the simulated network environment:

Number of messages to simulate. My emulator (and your routines) will stop as soon as this number of messages
have been passed down from layer 5, regardless of whether or not all of the messages have been correctly
delivered. Thus, you need not worry about undelivered or unACK'ed messages still in your sender when the
emulator stops. Note that if you set this value to 1, your program will terminate immediately, before the
message is delivered to the other side. Thus, this value should always be greater than 1.

Loss. You are asked to specify a packet loss probability. A value of 0.1 would mean that one in ten packets (on
average) are lost.

Corruption. You are asked to specify a packet loss probability. A value of 0.2 would mean that one in five
packets (on average) are corrupted. Note that the contents of payload, sequence, ack, or checksum fields can
be corrupted. Your checksum should thus include the data, sequence, and ack fields.

Tracing. Setting a tracing value of 1 or 2 will print out useful information about what is going on inside the
emulation (e.g., what's happening to packets and timers). A tracing value of 0 will turn this off. A tracing
value greater than 2 will display all sorts of odd messages that are for my own emulator-debugging purposes.
A tracing value of 2 may be helpful to you in debugging your code. You should keep in mind that real
implementors do not have underlying networks that provide such nice information about what is going to
happen to their packets!

Average time between messages from sender's layer5. You can set this value to any non-zero, positive value.
Note that the smaller the value you choose, the faster packets will be be arriving to your sender.

http://www.cse.wustl.edu/%7Ejain/cse574-20/

3-60
©2021 Raj Jainhttp://www.cse.wustl.edu/~jain/cse473-21/Washington University in St. Louis

Student Questions

Lab 3 (Cont)
The Alternating-Bit-Protocol Version of this lab.
You are to write the procedures, A_output(),A_input(),A_timerinterrupt(),A_init(),B_input(), and B_init() which

together will implement a stop-and-wait (i.e., the alternating bit protocol, which we referred to as rdt3.0 in the
text) unidirectional transfer of data from the A-side to the B-side. Your protocol should use both ACK and
NACK messages.

You should choose a very large value for the average time between messages from sender's layer5, so that your
sender is never called while it still has an outstanding, unacknowledged message it is trying to send to the
receiver. I'd suggest you choose a value of 1000. You should also perform a check in your sender to make
sure that when A_output() is called, there is no message currently in transit. If there is, you can simply ignore
(drop) the data being passed to the A_output() routine.

You should put your procedures in a file called prog2.c. You will need the initial version of this file, containing the
emulation routines we have writen for you, and the stubs for your procedures. You can obtain this program
from http://gaia.cs.umass.edu/kurose/transport/prog2.c.

This lab can be completed on any machine supporting C. It makes no use of UNIX features. (You can simply
copy the prog2.c file to whatever machine and OS you choose).

We recommend that you should hand in a code listing, a design document, and sample output. For your sample
output, your procedures might print out a message whenever an event occurs at your sender or receiver (a
message/packet arrival, or a timer interrupt) as well as any action taken in response. You might want to hand
in output for a run up to the point (approximately) when 10 messages have been ACK'ed correctly at the
receiver, a loss probability of 0.1, and a corruption probability of 0.3, and a trace level of 2. You might want
to annotate your printout with a colored pen showing how your protocol correctly recovered from packet loss
and corruption.

Note: The code requires GCC 4.8.
Ubuntu 14.0.4 comes with GCC 4.8. So you may need to install Ubuntu 14.0.4 in a virtual machine.

http://www.cse.wustl.edu/%7Ejain/cse574-20/
http://gaia.cs.umass.edu/kurose/transport/prog2.c

3-61
©2021 Raj Jainhttp://www.cse.wustl.edu/~jain/cse473-21/Washington University in St. Louis

Student Questions

Lab 3 (Cont)
Helpful Hints and the like
Checksumming. You can use whatever approach for checksumming you want. Remember that the sequence

number and ack field can also be corrupted. We would suggest a TCP-like checksum, which consists of the
sum of the (integer) sequence and ack field values, added to a character-by-character sum of the payload field
of the packet (i.e., treat each character as if it were an 8 bit integer and just add them together).

Note that any shared "state" among your routines needs to be in the form of global variables. Note also that any
information that your procedures need to save from one invocation to the next must also be a global (or static)
variable. For example, your routines will need to keep a copy of a packet for possible retransmission. It would
probably be a good idea for such a data structure to be a global variable in your code. Note, however, that if
one of your global variables is used by your sender side, that variable should NOT be accessed by the
receiving side entity, since in real life, communicating entities connected only by a communication channel
can not share global variables.

There is a float global variable called time that you can access from within your code to help you out with your
diagnostics msgs.

START SIMPLE. Set the probabilities of loss and corruption to zero and test out your routines. Better yet, design
and implement your procedures for the case of no loss and no corruption, and get them working first. Then
handle the case of one of these probabilities being non-zero, and then finally both being non-zero.

Debugging. We'd recommend that you set the tracing level to 2 and put LOTS of printf's in your code while your
debugging your procedures.

Random Numbers. The emulator generates packet loss and errors using a random number generator. Our past
experience is that random number generators can vary widely from one machine to another. You may need to
modify the random number generation code in the emulator we have suplied you. Our emulation routines
have a test to see if the random number generator on your machine will work with our code. If you get an
error message:

It is likely that random number generation on your machine is different from what this emulator expects. Please
take a look at the routine jimsrand() in the emulator code. Sorry.

then you'll know you'll need to look at how random numbers are generated in the routine jimsrand(); see the
comments in that routine.

http://www.cse.wustl.edu/%7Ejain/cse574-20/

3-62
©2021 Raj Jainhttp://www.cse.wustl.edu/~jain/cse473-21/Washington University in St. Louis

Student Questions

Optional Homework 3D
Try but do not submit.
A TCP entity opens a connection and uses slow start.

Approximately how many round-trip times are required before
TCP can send N segments.

CWND=1

CWND=2

CWND=4

Hint:

http://www.cse.wustl.edu/%7Ejain/cse574-20/

3-63
©2021 Raj Jainhttp://www.cse.wustl.edu/~jain/cse473-21/Washington University in St. Louis

Student Questions

Acronyms
 ACK ACKnowledgement
 AIMD Additive increase and multiplicative decrease
 ARQ Automatic Repeat Request
 CE Congestion Experienced
 CRC Cyclic Redundancy Check
 CWND Congestion Window
 CWR Congestion Window Reduced
 DA Destination Address
 DEC Digital Equipment Corporation
 DECbit DEC's bit based congestion scheme
 DevRTT Deviation of RTT
 DNS Domain Name System
 DP Destination Port
 ECE Explicit Congestion Experienced
 ECN Explicit Congestion Notification
 FIN Final

http://www.cse.wustl.edu/%7Ejain/cse574-20/

3-64
©2021 Raj Jainhttp://www.cse.wustl.edu/~jain/cse473-21/Washington University in St. Louis

Student Questions

Acronyms (Cont)
 FTP File Transfer Protocol
 GBN Go-Back N
 HTTP Hyper-Text Transfer Protocol
 IETF Internet Engineering Task Force
 IP Internet Protocol
 ISN Initial Sequence Number
 kB Kilo-Byte
 MSS Maximum segment size
 PBX Private Branch Exchange
 PSH Push
 RFC Request for Comments
 RM Resource Management
 RST Reset
 RTT Round-Trip Time
 SA Source Address
 SACK Selective Acknolowledgement

http://www.cse.wustl.edu/%7Ejain/cse574-20/

3-65
©2021 Raj Jainhttp://www.cse.wustl.edu/~jain/cse473-21/Washington University in St. Louis

Student Questions

Acronyms (Cont)
 SMTP Simple Mail Transfer Protocol
 SP Source Port
 SSThresh Slow Start Threshold
 SYN Synchronization
 SYNACK SYN Acknowledgement
 TCP Transmission Control Protocol
 UDP User Datagram Protocol
 URG Urgent
 VCI Virtual Circuit Identifiers

http://www.cse.wustl.edu/%7Ejain/cse574-20/

3-66
©2021 Raj Jainhttp://www.cse.wustl.edu/~jain/cse473-21/Washington University in St. Louis

Student Questions

Scan This to Download These Slides

Raj Jain
http://rajjain.com

http://www.cse.wustl.edu/~jain/cse473-21/i_3tcp.htm

http://www.cse.wustl.edu/%7Ejain/cse574-20/
http://rajjain.com/
http://www.cse.wustl.edu/%7Ejain/cse473-19/i_3tcp.htm

3-67
©2021 Raj Jainhttp://www.cse.wustl.edu/~jain/cse473-21/Washington University in St. Louis

Student Questions

Related Modules

Video Podcasts of Prof. Raj Jain's Lectures,
https://www.youtube.com/channel/UCN4-5wzNP9-ruOzQMs-8NUw

CSE473S: Introduction to Computer Networks (Fall 2011),
https://www.youtube.com/playlist?list=PLjGG94etKypJWOSPMh8Azcgy5e_10TiDw

CSE 570: Recent Advances in Networking (Spring 2013)
https://www.youtube.com/playlist?list=PLjGG94etKypLHyBN8mOgwJLHD2FFIMGq5

CSE 567: The Art of Computer Systems Performance Analysis
https://www.youtube.com/playlist?list=PLjGG94etKypJEKjNAa1n_1X0bWWNyZcof

CSE571S: Network Security (Spring 2011),
https://www.youtube.com/playlist?list=PLjGG94etKypKvzfVtutHcPFJXumyyg93u

http://www.cse.wustl.edu/%7Ejain/cse574-20/
https://www.youtube.com/channel/UCN4-5wzNP9-ruOzQMs-8NUw
https://www.youtube.com/playlist?list=PLjGG94etKypJWOSPMh8Azcgy5e_10TiDw
https://www.youtube.com/playlist?list=PLjGG94etKypLHyBN8mOgwJLHD2FFIMGq5
https://www.youtube.com/playlist?list=PLjGG94etKypJEKjNAa1n_1X0bWWNyZcof
https://www.youtube.com/playlist?list=PLjGG94etKypKvzfVtutHcPFJXumyyg93u

	Transport Layer: TCP and UDP
	Overview
	Transport Layer Design Issues
	Transport Layer
	Transport Layer Functions
	Protocol Layers
	Multiplexing and Demultiplexing
	User Datagram Protocol (UDP)
	Error Detection: Checksum
	1’s Complement
	Homework 3A: Checksum
	UDP: Summary
	Flow Control
	Sliding Window Diagram
	Stop and Wait Flow Control
	Sliding Window Protocol Efficiency
	Utilization: Examples
	Effect of Window Size
	Efficiency Principle
	Error Control: Retransmissions
	Go-Back-N ARQ
	Selective Repeat ARQ
	Selective Repeat: Window Size
	Performance: Maximum Utilization
	Performance Comparison
	Transport Layer Design Issues
	Homework 3B: Flow Control
	TCP
	Key Features of TCP
	TCP
	TCP Segment Format (Cont)
	TCP Header Fields
	TCP Header (Cont)
	TCP Header (Cont)
	TCP Options
	TCP Checksum
	TCP Connection Management
	Example RTT estimation:
	Round Trip Time Estimation
	Our Research on Congestion Control
	Slow Start Congestion Control
	Slow Start (Cont)
	Slow Start (Cont)
	AIMD Principle
	Fast Retransmit
	TCP Congestion Control State Diagram
	Homework 3C: Slow Start
	Homework 3C (Cont)
	Homework 3C (Cont)
	TCP Average Throughput
	Explicit Congestion Notification (ECN)
	ECN (Cont)
	TCP: Summary
	Summary
	Lab 3: Reliable Transport Protocol
	Lab 3 (Cont)
	Lab 3 (Cont)
	Lab 3 (Cont)
	Lab 3 (Cont)
	Lab 3 (Cont)
	Lab 3 (Cont)
	Optional Homework 3D
	Acronyms
	
Acronyms (Cont)
	
Acronyms (Cont)
	Scan This to Download These Slides
	Related Modules

