Multimedia Networking

Raj Jain

Washington University in Saint Louis Saint Louis, MO 63130 Jain@wustl.edu

Audio/Video recordings of this lecture are available on-line at:

http://www.cse.wustl.edu/~jain/cse473-20/

Washington University in St. Louis

http://www.cse.wustl.edu/~jain/cse473-20/i_9mmn.htm

©2020 Raj Jain

- Multimedia Networking Applications
- Skype
- Real-Time Transport Protocol (RTP)
- Session Initiation Protocol (SIP)

Note: This class lecture is based on Chapter 9 of the textbook (Kurose and Ross) and the figures provided by the authors.

Washington University in St. Louis

ttp://www.cse.wustl.edu/~jain/cse473-20/i 9mmn.htm

©2020 Raj Jain

9_2

Nultimedia Applications

- 1. Audio Digitization
- 2. Playout Buffers
- 3. Streaming Using UDP
- 4. Streaming Using HTTP

Audio Digitization Sampling: Analog audio signal sampled at constant rate ☐Telephone: 8,000 samples/sec quantized value **CD** music: analog value 44,100 samples/sec **Quantization**: Each sample \square 8 bits: 28=256 values □ 16 bit: 2¹⁶ values ■8 k samples/s each 8 bit \Rightarrow 64 kbps **Compression**: Compress to 5-16 kbps, e.g., using differences □ Lower bits/sample, samples/sec, or higher compression ⇒ Lower Quality Washington University in St. Louis http://www.cse.wustl.edu/~jain/cse473-20/i 9mmn.htm ©2020 Raj Jair

Washington University in St. Louis

http://www.cse.wustl.edu/~jain/cse473-20/i 9mmn.htm

©2020 Raj Jain

0.2

Multimedia Networking Applications

- ■Streaming Stored Multimedia
 - ■Stored Media: Fast rewind, pause, fast forward
 - ☐Streaming: simultaneous play out and download
 - □Continuous play out: Delay jitter smoothed by playout buffer
- □Streaming Live Multimedia: IPTV and Internet Radio
 - ■No fast-forward
 - ☐ High data rate to large number of users
 - ⇒ multicast or P2P,
 - ☐ Delay jitter controlled by caching,
- Real-Time Interactive Multimedia: Internet Telephone, Video Conferencing
 - Delay<400 ms.

Washington University in St. Louis

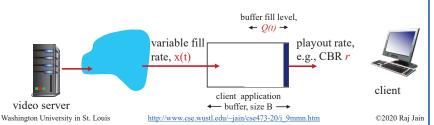
http://www.cse.wustl.edu/~jain/cse473-20/i_9mmn.htm

©2020 Rai Jain

Playout Buffers constant bit rate video client video reception playout at client playout delay compensates for network delay, delay jitter

 \square Delay > Playout Delay \Rightarrow Packet late \Rightarrow Same as a lost packet

Washington University in St. Louis

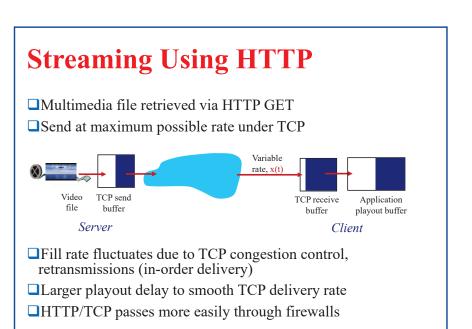

http://www.cse.wustl.edu/~jain/cse473-20/i_9mmn.htm

©2020 Raj Jain

9-6

Client-side Buffering

- Initial fill of buffer until playout begins at t_n
- 2. Fill rate x(t) varies and playout rate r is constant
- 3. x < r: Buffer eventually empties causing freezing of video
- 4. x > r: buffer will not empty, Flow control to avoid overflow
- 5. Tradeoff: Large initial playout delay \Rightarrow Buffer starvation less likely but larger delay until user begins watching



Streaming Using UDP

- □Server sends at rate appropriate for client
 - ☐Often: Send rate = Encoding rate = Constant
 - ☐ Transmission rate can be oblivious to congestion levels
- □Short playout delay (2-5 seconds) to remove network jitter
- □ Application level error recovery
- □UDP may *not* go through firewalls

Washington University in St. Louis

http://www.cse.wustl.edu/~jain/cse473-20/i 9mmn.htm

Review

Multimedia Applications

- 1. Audio is sampled, digitized, and compressed
- 2. Initial playout delay helps overcome the jitter in delay
- 3. UDP results in lower jitter but may not go through firewall
- 4. HTTP uses TCP and so the delay variation can be large

Ref: Section 9.1 and 9.2, Review Questions R1-R8, Problems P1-P5

Washington University in St. Louis

http://www.cse.wustl.edu/~jain/cse473-20/i_9mmn.htm

©2020 Raj Jair

0.10

Overview Voice Over IP

http://www.cse.wustl.edu/~jain/cse473-20/i_9mmn.htm

- 1. VoIP Packet Losses
- 2. VoIP with Fixed Playout Delay
- 3. VoIP with Adaptive Playout Delay
- 4. Recovering From Packet Loss
- 5. Skype

Washington University in St. Louis

Washington University in St. Louis http://www.cse.wustl.edu/~jain/cse473-20/i 9mmn.htm

©2020 Raj Jain

©2020 Raj Jain

Voice-over-IP (VoIP)

□End-end-delay Requirement: needed to maintain

"conversational" aspect

☐ Higher delays noticeable, impair interactivity

□< 150 ms: good

□> 400 ms: bad

□Includes application-level (packetization, playout), network delays

□Alternating talk spurts, silent periods.

□64 kbps during talk spurt

□Packets generated only during talk spurts

□20 ms chunks at 8 kbytes/sec: 160 bytes of data

□ Application sends a segment every 20 ms during talk spurt

Washington University in St. Louis

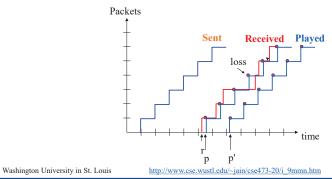
http://www.cse.wustl.edu/~jain/cse473-20/i 9mmn.htm

©2020 Raj Jair

VoIP Packet Losses

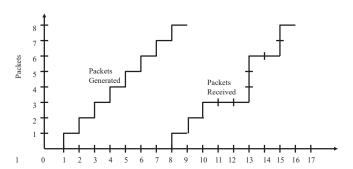
- Network Loss: IP datagram lost due to network congestion (router buffer overflow)
- □ Delay Loss: IP datagram arrives too late for playout □ typical maximum tolerable delay: 400 ms
- Loss Tolerance: Packet loss rates up to 10% can be concealed

Washington University in St. Louis


http://www.cse.wustl.edu/~jain/cse473-20/i_9mmn.htm

©2020 Raj Jain

9-13


VoIP with Fixed Playout Delay

- □Example: Packets sent every 20 ms during talk spurt.
- ☐ First packet received at time r
- ☐ If playout begins at p, 4th packet will arrive too late
- ☐ If playout begins at p', all packets can be played on time

0.1

Homework 9: Playout Delay

- □ [4 points] Consider the packet generation and reception sequence shown above. The first packet is generated at t=1 and is received at t=8.
- ☐ A. If Playout delay is zero and playout begins at t=8, which of the packets will not arrive in time? Show in a table.
- ☐ B. What is the minimum playout delay at the receiver that result in all of the first eight packets arriving in time for their playout?

Washington University in St. Louis

http://www.cse.wustl.edu/~jain/cse473-20/i_9mmn.htm

©2020 Raj Jain

Adaptive Playout Delay

- ■Estimate network delay, adjust playout delay at beginning of each talk spurt
- ☐Silent periods compressed and elongated
- □Chunks still played out every 20 ms during talk spurt
- □Adaptively estimate packet delay: Similar to TCP RTT estimate

Washington University in St. Louis

http://www.cse.wustl.edu/~jain/cse473-20/i 9mmn.htm

©2020 Raj Jair

©2020 Raj Jair

9-1

(

Adaptive Playout Delay

 $\Box t_i$ =Sending time

 $\square r_i$ = Receiving time

 \square Measured delay sample = r_i - t_i

 $\Box d_i$ = Average network delay

$$d_i = (1-a)d_{i-1} + a(r_i-t_i)$$

 $\square v_i$ = Variation of the delay

$$v_i = (1-a)v_{i-1} + a|r_i - t_i - d_i|$$

 $\square p_i$ = Playout time

$$p_i = t_i + d_i + Kv_i$$

 \square Here K is a constant, say 4.

■ Sequence numbers and timestamps used to determine talk spurts and silence

Washington University in St. Louis

http://www.cse.wustl.edu/~jain/cse473-20/i_9mmn.htm

©2020 Rai Jain

Skype clients (SC)

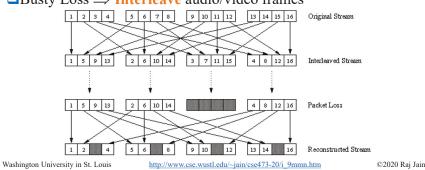
Super node (SN)

Super node

network

overlav

Recovering From Packet Loss


□Forward Error Correction

■Send n+1 packets in place of n packets

■Send a lower-resolution stream in addition

□Play out the old syllable

□Busty Loss ⇒ Interleave audio/video frames

9-18

Voice-over-IP: Skype

□ Proprietary
application-layer protocol
(inferred via reverse
engineering)

■Encrypted messages

■ P2P: Media does not go through a central server

☐ Clients: Skype peers connect directly to each other for VoIP call

■ Super Nodes (SN): Skype peers with special functions

Overlay Network: Among SNs to locate clients

□Login server

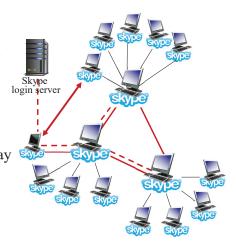
Washington University in St. Louis

http://www.cse.wustl.edu/~jain/cse473-20/i_9mmn.htm

login server

©2020 Raj Jain

P2P voice-over-IP: Skype


Skype client operation:

1. Joins Skype network by contacting SN (IP address cached) using TCP

2. Logs-in: Username, password to centralized Skype login server

3. Obtains IP address for callee from SN, SN overlay

4. Initiate call directly to callee via SN

Washington University in St. Louis

http://www.cse.wustl.edu/~jain/cse473-20/i_9mmn.htm

Skype: Super Nodes as Relays

- Problem: both Alice, Bob are behind "NATs"
 - NAT prevents outside peer from initiating connection to inside peer
 - Inside peer *can* initiate connection to outside
- Relay solution: Alice, Bob maintain open connection to their SNs
 - ☐ Alice signals her SN to connect to Bob
 - □Alice's SN connects to Bob's SN
 - Bob's SN connects to Bob over open connection Bob initiated

Washington University in St. Louis

http://www.cse.wustl.edu/~jain/cse473-20/i_9mmn.htm

©2020 Raj Jain

Voice over IP

- 1. Talk spurts are delayed to overcome jitter
- 2. Playout delay is estimated adaptively using mean and standard deviation
- 3. Forward error correction and interleaving is used to overcome losses and burst errors
- 4. Skype uses super nodes to help connect peers. A login server is used for authentication.
- 5. Skype nodes maintain an outgoing connection with the super nodes. These connections are used for incoming VoIP packets.

Ref: Section 9.3, Review Question R9-R11, Problems P6-P14

Washington University in St. Louis

http://www.cse.wustl.edu/~jain/cse473-20/i_9mmn.htm

©2020 Raj Jair

9-22

Protocols for Real-Time Applications

- 1. Real-Time Transport Protocol (RTP)
- 2. Session Initiation Protocol (SIP)
- 3. H.323 Protocols

Real-Time Transport Protocol (RTP)

- □Common sublayer between applications and UDP
- Provides sequence numbers, timestamps, and other facilities
- □Supports both unicast and multicast

transport layer Application

RTP

UDP

IP

Data Link

Data LIIK

Physical

Washington University in St. Louis

http://www.cse.wustl.edu/~jain/cse473-20/i 9mmn.htm

©2020 Raj Jain

Washington University in St. Louis

http://www.cse.wustl.edu/~jain/cse473-20/i 9mmn.htm

RTP Packet Format

Marker	Payload Type	Sequence Number		Synchronization Source Identifier	Miscellaneous Fields
1h	7h	16h	32h	32h	

- Marker indicates that the packet contains special data required by some applications
- \square SSRC = Synchronization \underline{S} ou \underline{rc} e = Stream #

Payload	Coding	Rate		
Type				
0	PCM mu-law	64 kbps		
3	GSM	13 kbps		
7	LPC	2.4 kbps		
26	Motion JPEG			
31	H.261			
33	MPEG2 video			

Washington University in St. Louis

http://www.cse.wustl.edu/~jain/cse473-20/i_9mmn.htm

©2020 Rai Jair

Session Initiation Protocol (SIP)

- ☐ Application level signaling protocol for voice and video conferencing over Internet
- ☐ Allows creating, modifying, terminating sessions with one or more participants
- ☐ Carries session descriptions (media types) for user capabilities negotiation
- □Supports user location, call setup, call transfers
- □Supports mobility by proxying and redirection

Washington University in St. Louis

http://www.cse.wustl.edu/~jain/cse473-20/i 9mmn.htm

©2020 Raj Jair

9-26

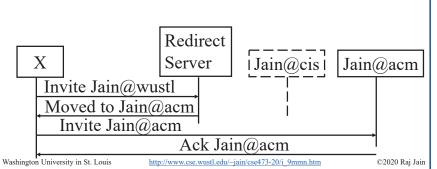
SIP (Cont)

□SIP Uniform Resource Identifiers (URIs):

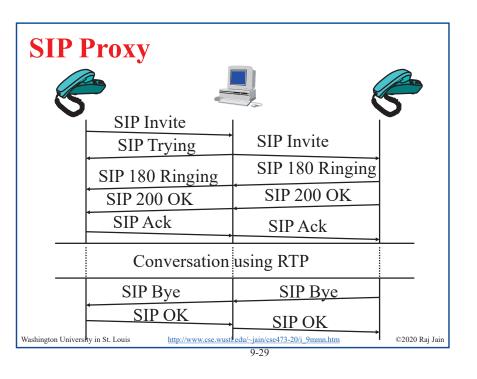
Similar to email URLs sip:jain@wustl.edu

sip:+1-614-292-3989:123@wustl.edu?subject=lecture

- ■SIP can use UDP or TCP
- □SIP messages are sent to SIP servers:
 - Registrar: Clients register and tell their location to it
 - □Location: Given name, returns possible addresses for a user. Like Directory service or DNS.
 - Redirect: Returns current address to requesters
 - □ Proxy: Intermediary. Acts like a server to internal client and like a client to external server


Washington University in St. Louis

http://www.cse.wustl.edu/~jain/cse473-20/i_9mmn.htm


©2020 Raj Jain

Locating using SIP

- □ Allows locating a callee at different locations
- ☐ Callee registers different locations with Registrar
- □SIP Messages: Ack, Bye, Invite, Register, Redirection, ...

9-2

H.323 Protocols

- Multimedia over LANs, V1 (June 96), V2(Feb 98)
- ☐ Provides component descriptions, signaling procedures, call control, system control, audio/video codecs, data protocols

Video	Audio		Control and Management			Data
H.261 H.263	G.711, G.722, G.723.1, G.728, G.729	RTCP		H.225.0 Signaling		
	RTP			X.224 Class 0		
	UDP	TCP			T.123	
Network (IP)						
	Datalink (IEEE 802.3)					

Washington University in St. Louis

http://www.cse.wustl.edu/~jain/cse473-20/i_9mmn.htm

©2020 Raj Jair

iversity in St. Louis

9-30

Review

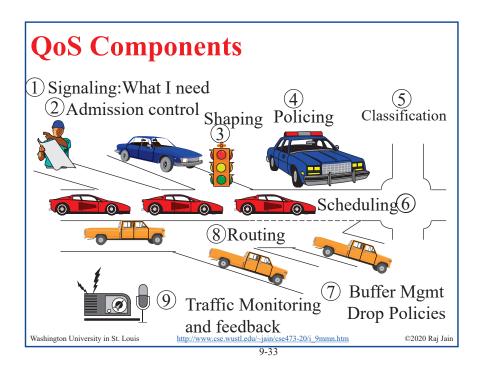
Protocols for Real-Time Applications

- 1. RTP is used to transmit multimedia over UDP
- 2. SIP is a signaling (control) protocol to establish multimedia connections
- 3. H.323 is a framework for a group of protocols used for multimedia

Overview Networking Support for Multimedia

- 1. QoS Components
- 2. Traffic Shaping
- 3. Token Bucket Shaper
- 4. Traffic Policing
- 5. Differentiated Services

Ref: Section 9.4, Review questions R12-R13, Problems P15-P16


Washington University in St. Louis http://www.cse.w/

http://www.cse.wustl.edu/~jain/cse473-20/i 9mmn.htm

©2020 Raj Jain

Washington University in St. Louis

http://www.cse.wustl.edu/~jain/cse473-20/i 9mmn.htm

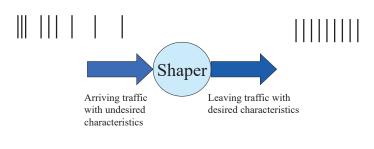
QoS Components (Cont)

- 1. Signaling: Users need to tell/negotiate their QoS requirements with the network
- Admission Control: Network can deny requests that it can not meet
- **Shaping:** Traffic is smoothed out so that it is easier to handle
- **Policing**: Ensuring that the users are sending at the rate they agreed
- Marking/Classification: Packets are classified based on the source, destination, TCP ports (application)
- **Scheduling**: Different flows get appropriate treatment
- **Drop Policies**: Low priority packets are dropped.
- Routing: Packets are sent over paths that can meet the QoS
- **Traffic Management**: Sources may be asked to reduce their rates to meet the loss rate and delay guarantees

Washington University in St. Louis

Washington University in St. Louis

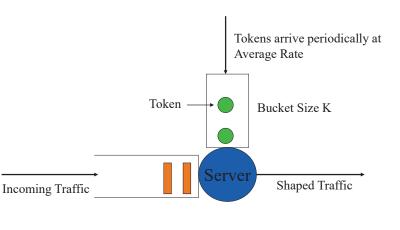
http://www.cse.wustl.edu/~jain/cse473-20/i_9mmn.htm

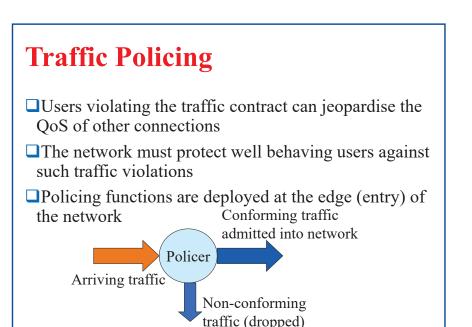

©2020 Raj Jair

©2020 Raj Jair

Traffic Shaping

Washington University in St. Louis

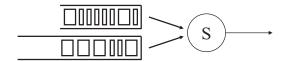

- □ Altering the traffic characteristics of a given flow is called traffic shaping
- The source must shape its traffic prior to sending it to network so it does not violate traffic contract


http://www.cse.wustl.edu/~jain/cse473-20/i 9mmn.htm

©2020 Raj Jain

Token Bucket Shaper

http://www.cse.wustl.edu/~jain/cse473-20/i_9mmn.htm

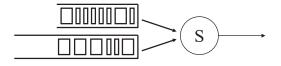

http://www.cse.wustl.edu/~jain/cse473-20/i_9mmn.htm

Peak Rate Policing with Leaky Bucket □ Enforces sustained rate and maximum Incoming burst size **Packets** Requires only one counter • counter is decremented, to a Rejected minimum of zero, at the avg rate • counter is incremented by one, to a maximum of a limiting value, for each packet arrival ☐ An arriving packet is non-conforming if Accepted counter is at its limit Washington University in St. Louis http://www.cse.wustl.edu/~jain/cse473-20/i_9mmn.htm ©2020 Raj Jair

Fair Queueing

Washington University in St. Louis

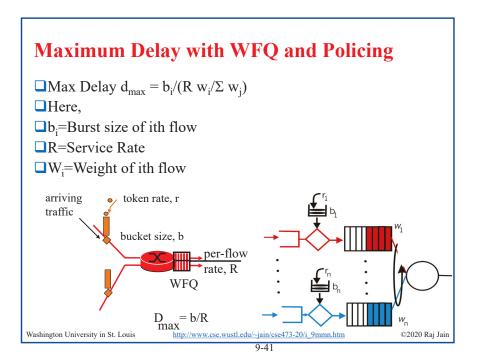
Washington University in St. Louis

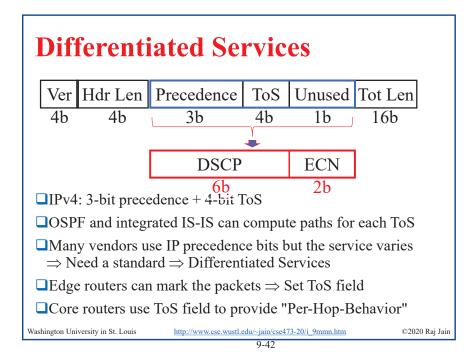

- ☐Bit-level round robin but packet level scheduling
- □Count the packet size and determine which packet would finish first. Serve that packet.
- ☐ Each flow gets the same number of bits/sec

http://www.cse.wustl.edu/~jain/cse473-20/i 9mmn.htm

©2020 Raj Jain

©2020 Rai Jair


Weighted Fair Queueing (WFQ)



- ☐ Fair queueing with different weight for each queue
- □Flow 1 gets x bit/sec
- □Flow 2 gets y bit/sec
- □Flow n gets z bit/sec
- ☐ Here, x, y, z are weights

Washington University in St. Louis

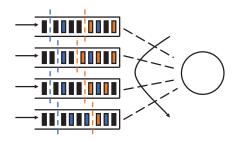
http://www.cse.wustl.edu/~jain/cse473-20/i 9mmn.htm

Per-hop Behaviors

- ■Externally Observable Forwarding Behavior
- □x% of link bandwidth
- ☐Minimum x% and fair share of excess bandwidth
- ☐ Priority relative to other PHBs

Washington University in St. Louis http://www.cse.wustl.edu/~jain/cse473-20/i 9mmn.htm

©2020 Raj Jain


Expedited Forwarding

- □Also known as "Premium Service"
- ■Virtual leased line
- ☐Guaranteed minimum service rate
- □Policed: Arrival rate < Minimum Service Rate
- ■Not affected by other data PHBs
- ⇒ Highest data priority (if priority queueing)
- □Code point: 101 110

Washington University in St. Louis

http://www.cse.wustl.edu/~jain/cse473-20/i 9mmn.htm

Assured Forwarding

- □PHB Group
- ☐ Four Classes: No particular ordering
- ☐ Three drop preference per class

Washington University in St. Louis

http://www.cse.wustl.edu/~jain/cse473-20/i_9mmn.htm

©2020 Raj Jain

Assured Forwarding (Cont)

- □DS nodes SHOULD implement all 4 classes and MUST accept all 3 drop preferences. Can implement 2 drop preferences.
- ☐ Similar to nrt-VBR/ABR/GFR
- □Code Points:

Drop Prec.	Class 1	Class 2	Class 3	Class 4
Low	010 000	011 000	100 000	101 000
Medium	010 010	011 010	100 010	101 010
High	010 100	011 100	100 100	101 100

□ Avoids 11x000 (used for network control)

Washington University in St. Louis

http://www.cse.wustl.edu/~jain/cse473-20/i_9mmn.htm

©2020 Raj Jair

9-46

Network Support for Multimedia

Approach	Granularity	Guarantee	Mechanisms	Complex	Deployed?
Making best	Making best All traffic		No network	low	everywhere
of best effort	treated	soft	support (all at		
service	equally		application)		
Differentiated	Traffic	None of	Packet market,	med	some
service	service "class"		scheduling,		
			policing.		
Per-	Per-	Soft or hard	Packet market,	high	little to
connection	connection	after flow	scheduling,		none
QoS flow		admitted	policing, call		
			admission		

Washington University in St. Louis

http://www.cse.wustl.edu/~jain/cse473-20/i 9mmn.htm

©2020 Raj Jain

Network Support for Multimedia

- 1. QoS is obtained using several components including shaping, policing, differentiated services
- 2. Shaping is done by a token bucket
- 3. Policing is done using a leaky bucket
- 4. Differentiated services specifies per-hop behaviors
 - 1. Expedited Forwarding: min service rate
 - 2. Assured Forwarding: 4 classes, 3 drop precedence's

wRefringeriou noter Problems Ploure22

http://www.cse.wustl.edu/~jain/cse473-20/i 9mmn.htm

©2020 Raj Jair

9-4

Summary

- 1. Multimedia applications require bounded delay, delay jitter, and minimum throughput
- RTP allows sequencing and time stamping
- SIP allows parameter negotiation and location
- QoS requires shaping, policing, scheduling, etc.
- Diffserv allows different packets to get different service

Ref: Entire Chapter 9, Review Exercises R1-R12, Problems P2-P4,P9, P11, P16, P19

Washington University in St. Louis http://www.cse.wustl.edu/~jain/cse473-20/i_9mmn.htm ©2020 Rai Jain

Acronyms

Available Bit Rate □ABR □ CBR Constant Bit Rate \Box CD Compact Disk DNS

Domain Name System

□DS DiffServe

Guaranteed Frame Rate □GFR \square HTTP HyperText Transfer Protocol

■IEEE Institution of Electrical and Electronics Engineers

□IP Internet Protocol

□IPTV Internet Protocol Television □IPv4 Internet Protocol Version 4

Integrated Services □LAN Local Area Network

■NAT Network Address Translator OSPF Open Shortest Path First

□PHB Per-Hop Behavior

Washington University in St. Louis http://www.cse.wustl.edu/~jain/cse473-20/i_9mmn.htm

9-50

Acronyms (Cont)

□QoS Quality of Service

■RAS Registration, Admission, and Status

□ RTCP Real-Time Transport Protocol Control Protocol

 \square RTP Real-Time Transport Protocol □ RTSP Real-Time Streaming Protocol

□RTT Round Trip Time **□**SC Skype Clients

□SIP Session Initiation Protocol

□SN Super Node

□SSRC Synchronization Source

 \Box TCP Transmission Control Protocol

□ ToS Type of Service

□UDP User Datagram Protocol **□**URI Uniform Resource Identifiers Uniform Resource Locator URL

□VBR Variable Bit Rate

Washington University in St. Louis http://www.cse.wustl.edu/~jain/cse473-20/i 9mmn.htm ©2020 Raj Jain

Acronyms (Cont)

■VoIP Voice over IP

Washington University in St. Louis

http://www.cse.wustl.edu/~jain/cse473-20/i_9mmn.htm

©2020 Raj Jair

©2020 Raj Jair

Related Modules

CSE 567: The Art of Computer Systems Performance Analysis https://www.youtube.com/playlist?list=PLjGG94etKypJEKjNAa1n 1X0bWWNyZcof

CSE473S: Introduction to Computer Networks (Fall 2011), https://www.youtube.com/playlist?list=PLjGG94etKypJWOSPMh8Azcgy5e_10TiDw

CSE 570: Recent Advances in Networking (Spring 2013)

 $\underline{https://www.youtube.com/playlist?list=PLjGG94etKypLHyBN8mOgwJLHD2FFIMGq5}$

CSE571S: Network Security (Spring 2011),

https://www.youtube.com/playlist?list=PLjGG94etKypKvzfVtutHcPFJXumyyg93u

Video Podcasts of Prof. Raj Jain's Lectures,

nttps://www.youtube.com/channel/UCN4-5wzNP9-ruOzQMs-8NUw

Washington University in St. Louis

http://www.cse.wustl.edu/~jain/cse473-20/i_9mmn.htm