
3-1
©2019 Raj JainWashington University in St. Louis http://www.cse.wustl.edu/~jain/cse473-19/

Transport Layer: Transport Layer:
TCP and UDPTCP and UDP

Raj JainRaj Jain
Washington University in Saint Louis

Saint Louis, MO 63130
Jain@wustl.edu

Audio/Video recordings of this lecture are available on-line at:
http://www.cse.wustl.edu/~jain/cse473-19/

3-2
©2019 Raj JainWashington University in St. Louis http://www.cse.wustl.edu/~jain/cse473-19/

OverviewOverview

Transport Layer Design Issues:
Multiplexing/Demultiplexing
Reliable Data Transfer
Flow control
Congestion control

UDP
TCP

Header format, connection management, checksum
Congestion Control

Note: This class lecture is based on Chapter 3 of the textbook
(Kurose and Ross) and the figures provided by the authors.

3-3
©2019 Raj JainWashington University in St. Louis http://www.cse.wustl.edu/~jain/cse473-19/

Transport Layer Design IssuesTransport Layer Design Issues

1. Transport Layer Functions
2. Multiplexing and Demultiplexing
3. Error Detection: Checksum
4. Flow Control
5. Efficiency Principle
6. Error Control: Retransmissions

Overview

3-4
©2019 Raj JainWashington University in St. Louis http://www.cse.wustl.edu/~jain/cse473-19/

Transport LayerTransport Layer

Transport = End-to-End Services
Services required at source and destination systems
Not required on intermediate hops

Application
Transport
Network
Datalink
Physical

Network
Datalink
Physical

Network
Datalink
Physical

Application
Transport
Network
Datalink
Physical

End System Router Router End System

3-5
©2019 Raj JainWashington University in St. Louis http://www.cse.wustl.edu/~jain/cse473-19/

Transport Layer FunctionsTransport Layer Functions
1. Multiplexing and demultiplexing: Among

applications and processes at end systems
2. Error detection: Bit errors
3. Loss detection: Lost packets due to buffer overflow

at intermediate systems (Sequence numbers and
acks)

4. Error/loss recovery: Retransmissions
5. Flow control: Ensuring receiver has buffers
6. Congestion Control: Ensuring network has capacity
Not all transports provide all functions

3-6
©2019 Raj JainWashington University in St. Louis http://www.cse.wustl.edu/~jain/cse473-19/

Protocol LayersProtocol Layers

Top-Down approach

Internetwork

Host to
Network

IP

Application

Transport

HTTP

TCP

FTP SMTP

UDP

Physical

Ethernet Wi-FiPoint-to-Point

Coax Fiber Wireless

P2P DNS Skype

3-7
©2019 Raj JainWashington University in St. Louis http://www.cse.wustl.edu/~jain/cse473-19/

Multiplexing and Multiplexing and DemultiplexingDemultiplexing
Transport Ports and Network addresses are used to separate
flows

IP:128.3.4.1

Web

TCP

IP :209.3.1.1 IP :125.5.1.1

User 1 Server User 2

DNSApplication

Transport

Network

UDP

Web DNS Web DNS

TCP UDP TCP UDP
Port #

Protocol Type

SP:3009 DP:80 SA: 128.3.4.1 DA: 209.3.1.1

SP:80 DP:3009 SA:209.3.1.1 DA:128.3.4.1
Ref: http://en.wikipedia.org/wiki/List_of_TCP_and_UDP_port_numbers

3-8
©2019 Raj JainWashington University in St. Louis http://www.cse.wustl.edu/~jain/cse473-19/

User Datagram Protocol (UDP)User Datagram Protocol (UDP)
Connectionless end-to-end service
Provides multiplexing via ports
Error detection (Checksum) optional. Applies to pseudo-
header (same as TCP) and UDP segment. If not used, it is set
to zero.
No error recovery (no acks). No retransmissions.
Used by network management, DNS, Streamed multimedia
(Applications that are loss tolerant, delay sensitive, or have
their own reliability mechanisms)

Source
Port

Dest
Port

Check-
sumLength

16b 16b 16b Size in bits16b

3-9
©2019 Raj JainWashington University in St. Louis http://www.cse.wustl.edu/~jain/cse473-19/

Error Detection: ChecksumError Detection: Checksum
Cyclic Redundancy Check (CRC): Powerful but generally
requires hardware
Checksum: Weak but easily done in software

Example: 1's complement of 1’s complement sum of 16-bit
words with overflow wrapped around

At receiver the sum is all 1’s and the checksum is zero.

1 1 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0
1 1 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

1 1 0 1 1 1 0 1 1 1 0 1 1 1 0 1 1

1 1 0 1 1 1 0 1 1 1 0 1 1 1 1 0 0
1 0 1 0 0 0 1 0 0 0 1 0 0 0 0 1 1

wraparound

sum
checksum

3-10
©2019 Raj JainWashington University in St. Louis http://www.cse.wustl.edu/~jain/cse473-19/

11’’s Complements Complement
2’s Complement: -ve of a number is complement+1

1 = 0001 -1 = 1111
2 = 0010 -2 = 1110
0 = 0000 -0 = 0000

1’s complement: -ve of a number is it’s complement
1 = 0001 -1 = 1110
2 = 0010 -2 = 1101
0 = 0000 -0 = 1111

2’s Complement sum: Add with carry. Drop the final carry, if any.
6-7 = 0110 + (-0111) = 0110 + 1001 = 1111 => -1
1’s complement sum: Add with carry. Add end-around carry back to sum

6-7 = 0110 + (-0111) = 0110+1000 = 1110 => -1
Complement of 1’s complement sum: 0001
Checksum: At the transmitter: 0110 1000, append 0001
At the receiver: 0110 1000 0001 compute checksum of the full packet

= complement of sum = complement of 1111 = 0000
Ref: https://en.wikipedia.org/wiki/Ones%27_complement

3-11
©2019 Raj JainWashington University in St. Louis http://www.cse.wustl.edu/~jain/cse473-19/

Homework 3AHomework 3A

Consider the following two 16-bit words: ABCD 1234
A. What is the checksum as computed by the sender
B. Add your answer of Part A to the end of the packet

and show how the receiver will compute the
checksum of the received three 16-bit words and
confirm that there are no errors.

C. Now assume that the first bit of the packet is flipped
due to an error. Repeat Part B at the receiver. Is the
error detected?

3-12
©2019 Raj JainWashington University in St. Louis http://www.cse.wustl.edu/~jain/cse473-19/

UDP: SummaryUDP: Summary

1. UDP provides flow multiplexing using port #s
2. UDP optionally provides error detection using the

checksum
3. UDP does not have error or loss recovery

mechanism

3-13
©2019 Raj JainWashington University in St. Louis http://www.cse.wustl.edu/~jain/cse473-19/

Flow ControlFlow Control
Flow Control Goals:
1.Sender does not flood the receiver,
2.Maximize throughput

Ack
Pkt 1

Ack
Pkt 2

Ack
Pkt 3

Sender Receiver Sender Receiver
Stop and Wait Flow Control Window Flow Control

Throughput = Throughput =
L/R

RTT+L/R
W L/R

RTT+L/R

Large RTT
 Low Thruput

L/R
RTT L= Packet Length

R= Link bit Rate

Ref: Textbook Section 3.4.2Section 3.4.2

3-14
©2019 Raj JainWashington University in St. Louis http://www.cse.wustl.edu/~jain/cse473-19/

Sliding Window DiagramSliding Window Diagram

3-15
©2019 Raj JainWashington University in St. Louis http://www.cse.wustl.edu/~jain/cse473-19/

Stop and Wait Flow ControlStop and Wait Flow Control

first bit transmitted, t = 0

Sender Receiver

RTT

last bit transmitted, t = L / R

First bit arrives
Last bit arrives, send ACK

ACK arrives, send next
packet, t = RTT + L / R

U =
L / R

RTT + L / R
=

1
2 + 12tprop+tframe

tframe
=

Here, = tprop/tframe

3-16
©2019 Raj JainWashington University in St. Louis http://www.cse.wustl.edu/~jain/cse473-19/

Sliding Window Protocol EfficiencySliding Window Protocol Efficiency

Data

Ack

tframe

tprop

U=
W tframe

2tprop+tframe

=

W
2+1

1 if W>2+1

Here, = tprop/tframe

W=1 Stop and Wait

3-17
©2019 Raj JainWashington University in St. Louis http://www.cse.wustl.edu/~jain/cse473-19/

Utilization: ExamplesUtilization: Examples
Satellite Link: One-way Propagation Delay = 270 ms

RTT=540 ms
Frame Size L = 500 Bytes = 4 kb
Data rate R = 56 kbps tframe = L/R= 4kb/56kbps =0.071s =
71 ms
 = tprop/tframe = 270/71 = 3.8
U = 1/(2+1) = 0.12

Short Link: 1 km = 5 s (Assuming Fiber 200 m/s),
Rate=10 Mbps,
Frame=500 bytes tframe= 4k/10M= 400 s
=tprop/tframe=5/400=0.012 U=1/(2+1)=0.98

Note: The textbook uses RTT in place of tprop and L/R for tframe

3-18
©2019 Raj JainWashington University in St. Louis http://www.cse.wustl.edu/~jain/cse473-19/

Effect of Window SizeEffect of Window Size

U

Larger window is better for larger

3-19
©2019 Raj JainWashington University in St. Louis http://www.cse.wustl.edu/~jain/cse473-19/

Efficiency PrincipleEfficiency Principle

For all protocols, the maximum utilization (efficiency)
is a non-increasing function of

Max
Utilization

Not Possible

Protocol 1
Protocol 2

Best
possible

 =
tprop

tframe

=
Distance/Speed of Signal
Bits Transmitted /Bit rate

=
Distance Bit rate
Bits Transmitted Speed of Signal

3-20
©2019 Raj JainWashington University in St. Louis http://www.cse.wustl.edu/~jain/cse473-19/

Error Control: RetransmissionsError Control: Retransmissions
Retransmit lost packets Automatic Repeat reQuest (ARQ)

Ack
Pkt 1

Pkt 2

Ack
Pkt 3

Sender Receiver
Stop and Wait ARQ

Timeout

Timeout

Pkt 2

Pkt 3

3-21
©2019 Raj JainWashington University in St. Louis http://www.cse.wustl.edu/~jain/cse473-19/

GoGo--BackBack--N ARQN ARQ

Receiver does not cache out-of-order frames
Sender has to go back and retransmit all frames after
the lost frame

RcvrSender

1

Nack 1
1

0
1

2

2

3

3

3-22
©2019 Raj JainWashington University in St. Louis http://www.cse.wustl.edu/~jain/cse473-19/

Selective Repeat ARQSelective Repeat ARQ

Receiver caches out-of-order frames
Sender retransmits only the lost frame
Also known as selective reject ARQ

RcvrSender

1

Nack 1
1

0
1

2

4

3

5

3-23
©2019 Raj JainWashington University in St. Louis http://www.cse.wustl.edu/~jain/cse473-19/

Selective Repeat: Window SizeSelective Repeat: Window Size

0
1
2
3
4
5
6
7

0
Ack

Sequence number space > 2 window size
Window size < 2n-1

Timeout

3-24
©2019 Raj JainWashington University in St. Louis http://www.cse.wustl.edu/~jain/cse473-19/

Performance: Maximum UtilizationPerformance: Maximum Utilization

Stop and Wait Flow Control: U = 1/(1+2)
Window Flow Control:

Stop and Wait ARQ: U = (1-P)/(1+2)
Go-back-N ARQ:

Selective Repeat ARQ:

U =
1 W> 2+1

W/(2+1) W< 2+1{

U =
(1-P)/(1+2P) W> 2+1

W(1-P)/[(2+1)(1-P+WP)] W< 2+1{
U =

(1-P) W> 2+1

W(1-P)/(2+1) W< 2+1{

P = Probability of Loss

3-25
©2019 Raj JainWashington University in St. Louis http://www.cse.wustl.edu/~jain/cse473-19/

Performance ComparisonPerformance Comparison
1.0

0.8

0.6

0.4

0.2

0.0
0.1 1 10 100 1000

U
til

iz
at

io
n

Stop-and-wait

W= 127 Go-back-N

W=7 Go-back-N &
W= 7 Selective-repeat

W= 127 Selective-repeat

More bps or longer distance

3-26
©2019 Raj JainWashington University in St. Louis http://www.cse.wustl.edu/~jain/cse473-19/

Transport Layer Design IssuesTransport Layer Design Issues

1. Multiplexing/demultiplexing by a combination of source and
destination IP addresses and port numbers.

2. Window flow control is better for long-distance or high-speed
networks

3. Longer distance or higher speed
 Larger Larger window is better

4. Stop and and wait flow control is ok for short distance or low-
speed networks

5. Selective repeat is better than stop and wait ARQ
Only slightly better than go-back-N

3-27
©2019 Raj JainWashington University in St. Louis http://www.cse.wustl.edu/~jain/cse473-19/

Homework 3BHomework 3B
Problem 19 on page 302 of the textbook:
Consider the GBN protocol with a sender window size of 3 and a sequence number

range of 1,024. Suppose that at time t, the next in-order packet that the receiver is
expecting has a sequence number of k. Assume that the medium does not reorder
messages. Answer the following questions:

A. What are the possible sets of sequence numbers insdie the sender’s window at time t?
Justify your answer.

B. What are all possible values of the ACK field in all possible messages currently
propagating back to the sender at time t? Justify your answer.

Window Flow Control:
C. How big window (in number of packets) is required for the channel utilization to be

greater than 60% on a cross-country link of 4000 km running at 20 Mbps using 1
kByte packets?

Efficiency Principle:
D. Ethernet V1 access protocol was designed to run at 10 Mbps over 2.5 Km using 1500

byte packets. This same protocol needs to be used at 100 Mbps at the same
efficiency. What distance can it cover if the frame size is not changed?

3-28
©2019 Raj JainWashington University in St. Louis http://www.cse.wustl.edu/~jain/cse473-19/

TCPTCP

1. TCP Header Format, Options, Checksum
2. TCP Connection Management
3. Round Trip Time Estimation
4. Principles of Congestion Control
5. Slow Start Congestion Control

Overview

3-29
©2019 Raj JainWashington University in St. Louis http://www.cse.wustl.edu/~jain/cse473-19/

Key Features of TCPKey Features of TCP
Point-to-Point: One sender, one receiver
Byte Stream: No message boundaries.
TCP makes “segments”

Maximum segment size (MSS)
Connection Oriented: Handshake to
initialize states before data exchange
Full Duplex: Bidirectional data flow in one connection
Reliable: In-order byte delivery
Flow control: To avoid receiver buffer overflow
Congestion control: To avoid network router buffer overflow

Bytes Bytes
Segments

3-30
©2019 Raj JainWashington University in St. Louis http://www.cse.wustl.edu/~jain/cse473-19/

TCPTCP
Transmission Control Protocol
Key Services:

Send: Please send when convenient
Data stream push: Destination TCP, please
deliver it immediately to the receiving application.
 Source TCP, please send it now.
Set on last packet of an application message.
Urgent data signaling: Destination TCP, please
give this urgent data to the user out-of-band.
Generally used for CTRL-C.

3-31
©2019 Raj JainWashington University in St. Louis http://www.cse.wustl.edu/~jain/cse473-19/

TCP Segment Format (Cont)TCP Segment Format (Cont)

Source Port Dest Port
Seq No
Ack No

Data
Offset WindowResvd

Checksum Urgent
Options

Data

U A P R S F

16b 16b

Pad

3-32
©2019 Raj JainWashington University in St. Louis http://www.cse.wustl.edu/~jain/cse473-19/

TCP Header FieldsTCP Header Fields

Source Port (16 bits): Identifies source user process
Destination Port (16 bits)
21 = FTP, 23 = Telnet, 53 = DNS, 80 = HTTP, ...
Sequence Number (32 bits): Sequence number of the
first byte in the segment. If SYN is present, this is
the initial sequence number (ISN) and the first data
byte is ISN+1.
Ack number (32 bits): Next byte expected
Data offset (4 bits): Number of 32-bit words in the
header
Reserved (6 bits)

3-33
©2019 Raj JainWashington University in St. Louis http://www.cse.wustl.edu/~jain/cse473-19/

TCP Header (Cont)TCP Header (Cont)
Control (6 bits):Urgent pointer field significant,

Ack field significant,
Push function,
Reset the connection,
Synchronize the sequence numbers,
No more data from sender

Window (16 bits):
Will accept [Ack] to [Ack]+[window]-1

ACKURG PSH RST SYN FIN

3-34
©2019 Raj JainWashington University in St. Louis http://www.cse.wustl.edu/~jain/cse473-19/

TCP Header (Cont)TCP Header (Cont)
Checksum (16 bits): covers the segment plus a
pseudo header. Includes the following fields from IP
header: source and dest adr, protocol, segment length.
Protects from IP misdelivery.
Urgent pointer (16 bits): Points to the byte following
urgent data. Lets receiver know how much data it
should deliver right away out-of-band.
Options (variable):
Max segment size (does not include TCP header,
default 536 bytes), Window scale factor, Selective
Ack permitted, Timestamp, No-Op, End-of-options

3-35
©2019 Raj JainWashington University in St. Louis http://www.cse.wustl.edu/~jain/cse473-19/

TCP OptionsTCP Options

End of Options: Stop looking for further option
No-op: Ignore this byte. Used to align the next option on a 4-
byte word boundary
Max Segment Size (MSS): Does not include TCP header

Kind Length Meaning
0 1 End of Valid options in header
1 1 No-op
2 4 Maximum Segment Size
3 3 Window Scale Factor
8 10 Timestamp

3-36
©2019 Raj JainWashington University in St. Louis http://www.cse.wustl.edu/~jain/cse473-19/

TCP ChecksumTCP Checksum
Checksum is the 16-bit one's complement of
the one's complement sum of a pseudo header of
information from the IP header, the TCP header, and
the data, padded with zero octets at the end (if
necessary) to make a multiple of two octets.
Checksum field is filled with zeros initially
TCP length (in octet) is not transmitted but used in
calculations.
Efficient implementation in RFC1071.

Source Adr Dest. Adr Zeros Protocol TCP Length

TCP Header TCP data
32 32 8 8 16

3-37
©2019 Raj JainWashington University in St. Louis http://www.cse.wustl.edu/~jain/cse473-19/

TCP Connection ManagementTCP Connection Management
Connection Establishment

Three way handshake
SYN flag set
 Request for connection

SYN, ISN = 100

SYN, ISN = 350, Ack 101

Ack 351

Connection Termination
Close with FIN flag set
Abort

FIN
Ack

Ack

FIN

3-38
©2019 Raj JainWashington University in St. Louis http://www.cse.wustl.edu/~jain/cse473-19/

Example RTT estimation:Example RTT estimation:
RTT: gaia.cs.umass.edu to fantasia.eurecom.fr

100

150

200

250

300

350

1 8 15 22 29 36 43 50 57 64 71 78 85 92 99 106
time (seconnds)

RT
T

(m
ill

ise
co

nd
s)

SampleRTT Estimated RTT

3-39
©2019 Raj JainWashington University in St. Louis http://www.cse.wustl.edu/~jain/cse473-19/

Round Trip Time EstimationRound Trip Time Estimation
Measured round trip time (SampleRTT) is very random.
EstimatedRTT=(1-)EstimatedRTT+ SampleRTT
DevRTT = (1-)DevRTT+ |SampleRTT-EstmatedRTT|
TimeoutInterval=EstimatedRTT+4 DevRTT

Value

Probability
Very low probability
of false timeout

3-40
©2019 Raj JainWashington University in St. Louis http://www.cse.wustl.edu/~jain/cse473-19/

Our Research on Congestion ControlOur Research on Congestion Control

Early 1980s Digital Equipment Corporation (DEC) introduced Ethernet
products
Noticed that throughput goes down with a higher-speed link in middle
(because no congestion mechanisms in TCP)
Results:
1. Timeout Congestion

 Reduce the TCP window to one on a timeout [Jain 1986]
2. Routers should set a bit when congested (DECbit).

[Jain, Ramakrishnan, Chiu 1988]
3. Introduced the term “Congestion Avoidance”
4. Additive increase and multiplicative decrease (AIMD principle)

[Chiu and Jain 1989]
There were presented to IETF in 1986.
 Slow-start based on Timeout and AIMD [Van Jacobson 1988]

1Mbps 1Mbps 1Mbps
Time=6 minutes

1Mbps 10Mbps 1Mbps
Time=6 hours Bit in header

3-41
©2019 Raj JainWashington University in St. Louis http://www.cse.wustl.edu/~jain/cse473-19/

Slow Start Congestion ControlSlow Start Congestion Control
Window = Flow control avoids receiver overrun
Need congestion control to avoid network overrun
The sender maintains two windows:
Credits from the receiver
Congestion window from the network
Congestion window is always less than the receiver window
Starts with a congestion window (CWND) of 1 max segment
size (MSS)
 Do not disturb existing connections too much.
Increase CWND by 1 MSS every time an ack is received
Assume CWND is in bytes

3-42
©2019 Raj JainWashington University in St. Louis http://www.cse.wustl.edu/~jain/cse473-19/

Slow Start (Cont)Slow Start (Cont)
If segments lost, remember slow start threshold (SSThresh) to
CWND/2
Set CWND to 1 MSS
Increment by 1MSS per ack until SSThresh
Increment by 1 MSS*MSS/CWND per ack afterwards

Time

Congestion
Window
CWND

Receiver Window
Idle

Interval

Timeout

1MSS

SSThresh

3-43
©2019 Raj JainWashington University in St. Louis http://www.cse.wustl.edu/~jain/cse473-19/

Slow Start (Cont)Slow Start (Cont)
At the beginning, SSThresh = Receiver window
After a long idle period (exceeding one round-trip time), reset
the congestion window to one.
If CWND is W MSS, W acks are received in one round trip.
Below SSThresh, CWND is increased by 1MSS on every ack
 CWND increases to 2W MSS in one round trip
 CWND increases exponentially with time
Exponential growth phase is also known as “Slow start” phase
Above SSThresh, CWND is increased by MSS/CWND on
every ack
 CWND increases by 1 MSS in one round trip
 CWND increases linearly with time
The linear growth phase is known as “congestion avoidance”
phase

3-44
©2019 Raj JainWashington University in St. Louis http://www.cse.wustl.edu/~jain/cse473-19/

AIMD PrincipleAIMD Principle
Additive Increase, Multiplicative
Decrease
W1+W2 = Capacity
 Efficiency,

W1=W2 Fairness
(W1,W2) to (W1+W,W2+W)
 Linear increase (45 line)
(W1,W2) to (kW1,kW2)
 Multiplicative decrease
(line through origin)

CapacityW1W
2

C

FairEfficient

Ref: D. Chiu and Raj Jain, "Analysis of the Increase/Decrease Algorithms for
Congestion Avoidance in Computer Networks," Journal of Computer
Networks and ISDN, Vol. 17, No. 1, June 1989, pp. 1-14,
http://www.cse.wustl.edu/~jain/papers/cong_av.htm

3-45
©2019 Raj JainWashington University in St. Louis http://www.cse.wustl.edu/~jain/cse473-19/

Fast RetransmitFast Retransmit
Optional – implemented in TCP Reno
(Earlier version was TCP Tahoe)
Duplicate Ack indicates a lost/out-of-order segment
On receiving 3 duplicate acks (4th ack for the same segment):

Enter Fast Recovery mode
Retransmit missing segment
Set SSThresh=CWND/2
Set CWND=SSThresh+3 MSS
Every subsequent duplicate ack: CWND=CWND+1MSS

When a new ack (not a duplicate ack) is received
Exit fast recovery
Set CWND=SSTHRESH

3-46
©2019 Raj JainWashington University in St. Louis http://www.cse.wustl.edu/~jain/cse473-19/

TCP Congestion ControlTCP Congestion Control State DiagramState Diagram

Slow
Start

Congestion
Avoidance

Fast
Recovery

Dup Ack
DupAckCount++

CWND<SSThresh, New Ack
CWND=CWND+MSS
DupAckCount=0
Transmit new segment as allowed

CWND=1MSS
SSThresh=Rcvr Win/2
DupAckCount=0
Transmit one segment

DupAckCount==3
SSThresh=CWND/2
Cwnd=ssthresh+3MSS
Retransmit missing
segment

Timeout
SSTthresh=CWND/2
CWND=1MSS
DupAckCount=0
Retransmit missing
segment

Dup Ack
DupAckCount++

Dup Ack
CWND=CWND+1MSS

Transmit new segments as allowed

DupAckCount==3
SSThresh=CWND/2
Cwnd=ssthresh+3MSS
Retransmit missing
segment

Ti
m

eo
ut

Ti
m

eo
ut

Ne
w

Ac
k

CW
ND

=s
sth

re
sh

du
pA

ck
Co

un
t=

0

New Ack
CWND=CWND+MSS*MSS/CWND
DupAckCount=0
Transmit new segment as allowed

Idle Idle

Idle

Note: The state transition
diagram in the textbook
does not show Idle state

CWND>SSThresh

3-47
©2019 Raj JainWashington University in St. Louis http://www.cse.wustl.edu/~jain/cse473-19/

TCP Average ThroughputTCP Average Throughput

Average Throughput =

Here, P = Probability of Packet loss

Note 1: The formula is an approximation which does not apply
at P=0 or P=1. At P=1, the throughput is zero. At P=0, the
throughput is min{1, (Receiver Window/RTT)}
Note 1: The textbook uses L for probability of packet loss but it
was used earlier for length of packets.

1.22 MSS

RTT P

3-48
©2019 Raj JainWashington University in St. Louis http://www.cse.wustl.edu/~jain/cse473-19/

Explicit Congestion Notification (ECN)Explicit Congestion Notification (ECN)
Explicit congestion notification (ECN) is based on our DECbit
research. Two bits in IP Header:

00: Transport is not capable of ECN (e.g., UDP)
01: Transport is capable of ECN
10: Transport is capable of ECN
11: Congestion experienced (CE)

When a router encounters congestion, instead of dropping the
datagram, it marks the two bits as “11” congestion experienced

Transport

Network
Datalink

Transport

Network
DatalinkECN11

ECE1

CWR1

Application Application

3-49
©2019 Raj JainWashington University in St. Louis http://www.cse.wustl.edu/~jain/cse473-19/

ECN (Cont)ECN (Cont)
On receiving “CE” code point, the receiver sends “ECN Echo
(ECE)” flag in the TCP header
On seeing the ECE flag, the source reduces its congestion
window, and sets “Congestion Window Reduced (CWR) flag
in outgoing segment
On receiving “CWR” flag, the receiver, stops setting ECE bit

Transport

Network
Datalink

Transport

Network
DatalinkECN11

ECE1

CWR1

Application Application

Ref: https://en.wikipedia.org/wiki/Explicit_Congestion_Notification

3-50
©2019 Raj JainWashington University in St. Louis http://www.cse.wustl.edu/~jain/cse473-19/

TCP: SummaryTCP: Summary

1. TCP uses port numbers for multiplexing
2. TCP provides reliable full-duplex connections.
3. TCP is stream based and has window flow control
4. Slow-start congestion control works on timeout
5. Explicit congestion notification works using ECN

bits

3-51
©2019 Raj JainWashington University in St. Louis http://www.cse.wustl.edu/~jain/cse473-19/

Homework 3CHomework 3C
Consider Figure below. Assuming TCP Reno is the
protocol experiencing the behavior shown above, answer
the following questions. In all cases, you should provide
a short discussion justifying your answer.

TCP Window Size

0
5

10
15
20
25
30
35
40
45

0 5 10 15 20 25 30
Transmission Round

C
W

N
D

Round CWND
1 1
2 2
3 4
4 8
5 16
6 32
7 33
8 34
9 35

10 36
11 37
12 38
13 39
14 40
15 41
16 42
17 21
18 22
19 23
20 24
21 25
22 26
23 1
24 2
25 4
26 8

3-52
©2019 Raj JainWashington University in St. Louis http://www.cse.wustl.edu/~jain/cse473-19/

Homework 3C (Cont)Homework 3C (Cont)
A. Identify the interval of time when TCP slow start is
operating.
B. Identify the intervals of time when TCP congestion
avoidance is operating.
C. After the 16th transmission round, is segment loss detected
by a triple duplicate ACK or by a timeout?
D. After the 22nd transmission round, is segment loss detected
by a triple duplicate ACK or by a timeout?
E. What is the initial value of ssthresh at the first transmission
round?
F .What is the value of ssthresh at the 18th transmission round?
G. What is the value of ssthresh at the 24th transmission round?

3-53
©2019 Raj JainWashington University in St. Louis http://www.cse.wustl.edu/~jain/cse473-19/

Homework 3C (Cont)Homework 3C (Cont)
H. During what transmission round is the 70th segment sent?
I. Assuming a packet loss is detected after the 26th round by the
receipt of a triple duplicate ACK, what will be the values of the
congestion window size and of ssthresh?
J. Suppose TCP Tahoe is used (instead of TCP Reno), and
assume that triple duplicate ACKs are received at the 16th

round. What are the ssthresh and the congestion window size at
the 19th round?
K. Again suppose TCP Tahoe is used, and there is a timeout
event at the end of 22nd round. How many packets have been
sent out from 17th round till 22nd round, inclusive?

3-54
©2019 Raj JainWashington University in St. Louis http://www.cse.wustl.edu/~jain/cse473-19/

SummarySummary

1. Multiplexing/demultiplexing by a combination of source and
destination IP addresses and port numbers.

2. Longer distance or higher speed
 Larger Larger window is better

3. Window flow control is better for long-distance or high-speed
networks

4. UDP is connectionless and simple.
No flow/error control. Has error detection.

5. TCP provides full-duplex connections with
flow/error/congestion control.

3-55
©2019 Raj JainWashington University in St. Louis http://www.cse.wustl.edu/~jain/cse473-19/

Lab 3: Reliable Transport Protocol
Overview
In this laboratory programming assignment, you will be writing the sending and receiving transport-level code for

implementing a simple reliable data transfer protocol. There are two versions of this lab, the Alternating-Bit-
Protocol version and the Go-Back-N version. This lab should be fun since your implementation will differ
very little from what would be required in a real-world situation.

Since you probably don't have standalone machines (with an OS that you can modify), your code will have to
execute in a simulated hardware/software environment. However, the programming interface provided to
your routines, i.e., the code that would call your entities from above and from below is very close to what is
done in an actual UNIX environment. (Indeed, the software interfaces described in this programming
assignment are much more realistic that the infinite loop senders and receivers that many texts describe).
Stopping/starting of timers are also simulated, and timer interrupts will cause your timer handling routine to
be activated.

The routines you will write
The procedures you will write are for the sending entity (A) and the receiving entity (B). Only unidirectional

transfer of data (from A to B) is required. Of course, the B side will have to send packets to A to
acknowledge (positively or negatively) receipt of data. Your routines are to be implemented in the form of
the procedures described below. These procedures will be called by (and will call) procedures that I have
written which emulate a network environment. The overall structure of the environment is shown in Figure
Lab.3-1 (structure of the emulated environment):

The unit of data passed between the upper layers and your protocols is a message, which is declared as:
struct msg { char data[20];
};
This declaration, and all other data structure and emulator routines, as well as stub routines (i.e., those you are to

complete) are in the file, prog2.c, described later. Your sending entity will thus receive data in 20-byte
chunks from layer5; your receiving entity should deliver 20-byte chunks of correctly received data to layer5
at the receiving side.

3-56
©2019 Raj JainWashington University in St. Louis http://www.cse.wustl.edu/~jain/cse473-19/

Lab 3 (Cont)
The unit of data passed between your routines and the network layer is the packet, which is declared as:
struct pkt { int seqnum; int acknum;
int checksum; char payload[20];
};
Your routines will fill in the payload field from the message data passed down from layer5. The other packet

fields will be used by your protocols to insure reliable delivery, as we've seen in class.
The routines you will write are detailed below. As noted above, such procedures in real-life would be part of the

operating system, and would be called by other procedures in the operating system.
A_output(message), where message is a structure of type msg, containing data to be sent to the B-side. This

routine will be called whenever the upper layer at the sending side (A) has a message to send. It is the job of
your protocol to insure that the data in such a message is delivered in-order, and correctly, to the receiving
side upper layer.

A_input(packet), where packet is a structure of type pkt. This routine will be called whenever a packet sent from
the B-side (i.e., as a result of a tolayer3() being done by a B-side procedure) arrives at the A-side. packet is
the (possibly corrupted) packet sent from the B-side.

A_timerinterrupt() This routine will be called when A's timer expires (thus generating a timer interrupt). You'll
probably want to use this routine to control the retransmission of packets. See starttimer() and stoptimer()
below for how the timer is started and stopped.

A_init() This routine will be called once, before any of your other A-side routines are called. It can be used to do
any required initialization.

B_input(packet),where packet is a structure of type pkt. This routine will be called whenever a packet sent from
the A-side (i.e., as a result of a tolayer3() being done by a A-side procedure) arrives at the B-side. packet is
the (possibly corrupted) packet sent from the A-side.

B_init() This routine will be called once, before any of your other B-side routines are called. It can be used to do
any required initialization.

3-57
©2019 Raj JainWashington University in St. Louis http://www.cse.wustl.edu/~jain/cse473-19/

Lab 3 (Cont)
Software Interfaces
The procedures described above are the ones that you will write. I have written the following routines which can

be called by your routines:
starttimer(calling_entity,increment), where calling_entity is either 0 (for starting the A-side timer) or 1 (for

starting the B side timer), and increment is a float value indicating the amount of time that will pass before
the timer interrupts. A's timer should only be started (or stopped) by A-side routines, and similarly for the B-
side timer. To give you an idea of the appropriate increment value to use: a packet sent into the network
takes an average of 5 time units to arrive at the other side when there are no other messages in the medium.

stoptimer(calling_entity), where calling_entity is either 0 (for stopping the A-side timer) or 1 (for stopping the B
side timer).

tolayer3(calling_entity,packet), where calling_entity is either 0 (for the A-side send) or 1 (for the B side send),
and packet is a structure of type pkt. Calling this routine will cause the packet to be sent into the network,
destined for the other entity.

tolayer5(calling_entity,message), where calling_entity is either 0 (for A-side delivery to layer 5) or 1 (for B-side
delivery to layer 5), and message is a structure of type msg. With unidirectional data transfer, you would
only be calling this with calling_entity equal to 1 (delivery to the B-side). Calling this routine will cause data
to be passed up to layer 5.

3-58
©2019 Raj JainWashington University in St. Louis http://www.cse.wustl.edu/~jain/cse473-19/

Lab 3 (Cont)
The simulated network environment
A call to procedure tolayer3() sends packets into the medium (i.e., into the network layer). Your procedures
A_input() and B_input() are called when a packet is to be delivered from the medium to your protocol layer.
The medium is capable of corrupting and losing packets. It will not reorder packets. When you compile your

procedures and my procedures together and run the resulting program, you will be asked to specify values
regarding the simulated network environment:

Number of messages to simulate. My emulator (and your routines) will stop as soon as this number of messages
have been passed down from layer 5, regardless of whether or not all of the messages have been correctly
delivered. Thus, you need not worry about undelivered or unACK'ed messages still in your sender when the
emulator stops. Note that if you set this value to 1, your program will terminate immediately, before the
message is delivered to the other side. Thus, this value should always be greater than 1.

Loss. You are asked to specify a packet loss probability. A value of 0.1 would mean that one in ten packets (on
average) are lost.

Corruption. You are asked to specify a packet loss probability. A value of 0.2 would mean that one in five
packets (on average) are corrupted. Note that the contents of payload, sequence, ack, or checksum fields can
be corrupted. Your checksum should thus include the data, sequence, and ack fields.

Tracing. Setting a tracing value of 1 or 2 will print out useful information about what is going on inside the
emulation (e.g., what's happening to packets and timers). A tracing value of 0 will turn this off. A tracing
value greater than 2 will display all sorts of odd messages that are for my own emulator-debugging purposes.
A tracing value of 2 may be helpful to you in debugging your code. You should keep in mind that real
implementors do not have underlying networks that provide such nice information about what is going to
happen to their packets!

Average time between messages from sender's layer5. You can set this value to any non-zero, positive value.
Note that the smaller the value you choose, the faster packets will be be arriving to your sender.

3-59
©2019 Raj JainWashington University in St. Louis http://www.cse.wustl.edu/~jain/cse473-19/

Lab 3 (Cont)
The Alternating-Bit-Protocol Version of this lab.
You are to write the procedures, A_output(),A_input(),A_timerinterrupt(),A_init(),B_input(), and B_init() which

together will implement a stop-and-wait (i.e., the alternating bit protocol, which we referred to as rdt3.0 in
the text) unidirectional transfer of data from the A-side to the B-side. Your protocol should use both ACK
and NACK messages.

You should choose a very large value for the average time between messages from sender's layer5, so that your
sender is never called while it still has an outstanding, unacknowledged message it is trying to send to the
receiver. I'd suggest you choose a value of 1000. You should also perform a check in your sender to make
sure that when A_output() is called, there is no message currently in transit. If there is, you can simply
ignore (drop) the data being passed to the A_output() routine.

You should put your procedures in a file called prog2.c. You will need the initial version of this file, containing
the emulation routines we have writen for you, and the stubs for your procedures. You can obtain this
program from http://gaia.cs.umass.edu/kurose/transport/prog2.c.

This lab can be completed on any machine supporting C. It makes no use of UNIX features. (You can
simply copy the prog2.c file to whatever machine and OS you choose).

We recommend that you should hand in a code listing, a design document, and sample output. For your sample
output, your procedures might print out a message whenever an event occurs at your sender or receiver (a
message/packet arrival, or a timer interrupt) as well as any action taken in response. You might want to hand
in output for a run up to the point (approximately) when 10 messages have been ACK'ed correctly at the
receiver, a loss probability of 0.1, and a corruption probability of 0.3, and a trace level of 2. You might want
to annotate your printout with a colored pen showing how your protocol correctly recovered from packet loss
and corruption.

Make sure you read the "helpful hints" for this lab following the description of the Go_Back-N version of this
lab.

3-60
©2019 Raj JainWashington University in St. Louis http://www.cse.wustl.edu/~jain/cse473-19/

Lab 3 (Cont)
The Go-Back-N version of this lab.
You are to write the procedures, A_output(),A_input(),A_timerinterrupt(),A_init(),B_input(), and B_init() which

together will implement a Go-Back-N unidirectional transfer of data from the A-side to the B-side, with a
window size of 8. Your protocol should use both ACK and NACK messages. Consult the alternating-bit-
protocol version of this lab above for information about how to obtain the network emulator.

We would STRONGLY recommend that you first implement the easier lab (Alternating Bit) and then extend
your code to implement the harder lab (Go-Back-N). Believe me - it will not be time wasted! However,
some new considerations for your Go-Back-N code (which do not apply to the Alternating Bit protocol) are:

A_output(message), where message is a structure of type msg, containing data to be sent to the B-side.
Your A_output() routine will now sometimes be called when there are outstanding, unacknowledged messages in

the medium - implying that you will have to buffer multiple messages in your sender. Also, you'll also need
buffering in your sender because of the nature of Go-Back-N: sometimes your sender will be called but it
won't be able to send the new message because the new message falls outside of the window.

Rather than have you worry about buffering an arbitrary number of messages, it will be OK for you to have some
finite, maximum number of buffers available at your sender (say for 50 messages) and have your sender
simply abort (give up and exit) should all 50 buffers be in use at one point (Note: using the values given
below, this should never happen!) In the ``real-world,'' of course, one would have to come up with a more
elegant solution to the finite buffer problem!

A_timerinterrupt() This routine will be called when A's timer expires (thus generating a timer interrupt).
Remember that you've only got one timer, and may have many outstanding, unacknowledged packets in the
medium, so you'll have to think a bit about how to use this single timer.

3-61
©2019 Raj JainWashington University in St. Louis http://www.cse.wustl.edu/~jain/cse473-19/

Lab 3 (Cont)
Consult the Alternating-bit-protocol version of this lab above for a general description of what you might want to

hand in. You might want to hand in output for a run that was long enough so that at least 20 messages were
successfully transfered from sender to receiver (i.e., the sender receives ACK for these messages) transfers, a
loss probability of 0.2, and a corruption probability of 0.2, and a trace level of 2, and a mean time between
arrivals of 10. You might want to annotate parts of your printout with a colored pen showing how your
protocol correctly recovered from packet loss and corruption.

3-62
©2019 Raj JainWashington University in St. Louis http://www.cse.wustl.edu/~jain/cse473-19/

Lab 3 (Cont)
Helpful Hints and the like
Checksumming. You can use whatever approach for checksumming you want. Remember that the sequence

number and ack field can also be corrupted. We would suggest a TCP-like checksum, which consists of the
sum of the (integer) sequence and ack field values, added to a character-by-character sum of the payload
field of the packet (i.e., treat each character as if it were an 8 bit integer and just add them together).

Note that any shared "state" among your routines needs to be in the form of global variables. Note also that any
information that your procedures need to save from one invocation to the next must also be a global (or
static) variable. For example, your routines will need to keep a copy of a packet for possible retransmission.
It would probably be a good idea for such a data structure to be a global variable in your code. Note,
however, that if one of your global variables is used by your sender side, that variable should NOT be
accessed by the receiving side entity, since in real life, communicating entities connected only by a
communication channel can not share global variables.

There is a float global variable called time that you can access from within your code to help you out with your
diagnostics msgs.

START SIMPLE. Set the probabilities of loss and corruption to zero and test out your routines. Better yet,
design and implement your procedures for the case of no loss and no corruption, and get them working first.
Then handle the case of one of these probabilities being non-zero, and then finally both being non-zero.

Debugging. We'd recommend that you set the tracing level to 2 and put LOTS of printf's in your code while your
debugging your procedures.

Random Numbers. The emulator generates packet loss and errors using a random number generator. Our past
experience is that random number generators can vary widely from one machine to another. You may need
to modify the random number generation code in the emulator we have suplied you. Our emulation routines
have a test to see if the random number generator on your machine will work with our code. If you get an
error message:

It is likely that random number generation on your machine is different from what this emulator expects. Please
take a look at the routine jimsrand() in the emulator code. Sorry.

then you'll know you'll need to look at how random numbers are generated in the routine jimsrand(); see the
comments in that routine.

3-63
©2019 Raj JainWashington University in St. Louis http://www.cse.wustl.edu/~jain/cse473-19/

Optional Homework 3DOptional Homework 3D

Try but do not submit.
A TCP entity opens a connection and uses slow start.

Approximately how many round-trip times are
required before TCP can send N segments.

CWND=1

CWND=2

CWND=4

Hint:

3-64
©2019 Raj JainWashington University in St. Louis http://www.cse.wustl.edu/~jain/cse473-19/

AcronymsAcronyms
ACK ACKnowledgement
AIMD Additive increase and multiplicative decrease
ARQ Automatic Repeat Request
CE Congestion Experienced
CRC Cyclic Redundancy Check
CWND Congestion Window
CWR Congestion Window Reduced
DA Destination Address
DEC Digital Equipment Corporation
DECbit DEC's bit based congestion scheme
DevRTT Deviation of RTT
DNS Domain Name System
DP Destination Port
ECE Explicit Congestion Experienced
ECN Explicit Congestion Notification
FIN Final

3-65
©2019 Raj JainWashington University in St. Louis http://www.cse.wustl.edu/~jain/cse473-19/

 Acronyms (Cont) Acronyms (Cont)
FTP File Transfer Protocol
GBN Go-Back N
HTTP Hyper-Text Transfer Protocol
IETF Internet Engineering Task Force
IP Internet Protocol
ISN Initial Sequence Number
kB Kilo-Byte
MSS Maximum segment size
PBX Private Branch Exchange
PSH Push
RFC Request for Comments
RM Resource Management
RST Reset
RTT Round-Trip Time
SA Source Address
SACK Selective Acknolowledgement

3-66
©2019 Raj JainWashington University in St. Louis http://www.cse.wustl.edu/~jain/cse473-19/

 Acronyms (Cont) Acronyms (Cont)
SMTP Simple Mail Transfer Protocol
SP Source Port
SSThresh Slow Start Threshold
SYN Synchronization
SYNACK SYN Acknowledgement
TCP Transmission Control Protocol
UDP User Datagram Protocol
URG Urgent
VCI Virtual Circuit Identifiers

3-67
©2019 Raj JainWashington University in St. Louis http://www.cse.wustl.edu/~jain/cse473-19/

Scan This to Download These SlidesScan This to Download These Slides

Raj Jain
http://rajjain.com

http://www.cse.wustl.edu/~jain/cse473-19/i_3tcp.htm

3-68
©2019 Raj JainWashington University in St. Louis http://www.cse.wustl.edu/~jain/cse473-19/

Related Modules

Video Podcasts of Prof. Raj Jain's Lectures,
https://www.youtube.com/channel/UCN4-5wzNP9-ruOzQMs-8NUw

CSE473S: Introduction to Computer Networks (Fall 2011),
https://www.youtube.com/playlist?list=PLjGG94etKypJWOSPMh8Azcgy5e_10TiDw

CSE 570: Recent Advances in Networking (Spring 2013)
https://www.youtube.com/playlist?list=PLjGG94etKypLHyBN8mOgwJLHD2FFIMGq5

CSE 567: The Art of Computer Systems Performance Analysis
https://www.youtube.com/playlist?list=PLjGG94etKypJEKjNAa1n_1X0bWWNyZcof

CSE571S: Network Security (Spring 2011),
https://www.youtube.com/playlist?list=PLjGG94etKypKvzfVtutHcPFJXumyyg93u

