

Washington University in St. Louis http://www.cse.wustl.edu/~jain/cse473-16/ ©2016 Raj Jain 3-11 3-11	 Consider the following two 16-bit words: ABCD 1234 A. What is the checksum as computed by the sender B. Add your answer of Part A to the end of the packet and show how the receiver will compute the checksum of the received three 16-bit words and confirm that there are no errors. C. Now assume that the first bit of the packet is flipped due to an error. Repeat Part B at the receiver. Is the error detected? 	Homework 3A	Error Detection: Checksum Cyclic Redundancy Check (CRC): Powerful but generally requires hardware Checksum: Weak but easily done in software Example: I's complement of 1's complement sum of 16-bit words with overflow wrapped around 1 1 0 1 1 0 1 1 0 I 1 0 0 1 0 1 1 0 1 1 0 I 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1
Washington University in St. Louis http://www.csc.wustl.cdu/~jain/csc473-16/ ©2016 Raj Jain 3-12	 UDP provides flow multiplexing using port #s UDP optionally provides error detection using the checksum UDP does not have error or loss recovery mechanism 	UDP: Summary	1's Complement 2's Complement:-1 = 1111-1 = 10001-2 = 1110-2 = 0010-0 = 0000-1 = 1110-1 = 0001-1 = 1110-2 = 0010-2 = 1101-2 = 1101-2 = 0000-2 = 1101-2 = 0010-2 = 1101-2 = 0010-2 = 1101-2 = 0010-2 = 1101-2 = 0000-0 = 11112's Complement sum: Add with carry. Drop the final carry, if any.6-7 = 0110 + (-0111) = 0110 + 1001 = 1111 => -11's complement sum: Add with carry. Add end-around carry back to sum-6-7 = 0110 + (-0111) = 0110+1000 = 1110 => -1Complement of 1's complement sum: 0001Checksum: At the transmitter: 0110 1000, append 0001At the receiver: 0110 1000 0001 compute checksum of the full packet= complement of sum = complement of 1111 = 0000Ref. Intervent of Sum = complement of 1111 = 0000Ref. Intervent of Sum = complement of 1111 = 0000Ref. Intervent of Sum = complement of 1111 = 00008-102-10

Washington University in St. Louis http://www.cse.wustl.edu/~jain/cse473-16/ ©2016 Raj Jain 2.21 2.21	 Transmission Control Protocol Generally used for CTRL-C. 	Image: Notion of Conjugation Control 1. TCP Header Format, Options, Checksum 2. TCP Connection Management 3. Round Trip Time Estimation 4. Principles of Congestion Control 5. Slow Start Congestion Control 5. Slow Start Congestion Control 5. Slow Start Congestion Control
Washington University in St. Louis http://www.ssc.wustl.edu/~jain/cse473-16/ ©2016 Raj Jain 2.27	TCP Segment Format (Cont 16 16 Source Port Seq No Data Resvd Val Offset Resvd Vindow Checksum Urgent Data Options Pad Data Data Data Data	Key Features of TCP Point-to-Point: One sender, one receiver Image: Segments Byte Stream: No message boundaries. TCP makes "segments" Bytes → Image: Segments Image: Segments Image: Maximum segment size (MSS) Image: Segments Connection Oriented: Handshake to initialize states before data exchange Image: Segments Full Duplex: Bidirectional data flow in one connection Image: Segments Reliable: In-order byte delivery Image: Segments Flow control: To avoid receiver buffer overflow Image: Segments Congestion control: To avoid network router buffer overflow Image: Segments Wakington University in St. Lonix Image: Segments Segments 3-30 3-30 Segments Segments

мазницкоп синversity игэс, гоонз <u>ицрэгмум, сэссуулал (100,000,000)</u> ∞2010 хар аан	 Checksum (16 bits): covers the segment plus a pseudo header. Includes the following fields from IP header: source and dest adr, protocol, segment length. Protects from IP misdelivery. Urgent pointer (16 bits): Points to the byte following urgent data. Lets receiver know how much data it should deliver right away out-of-band. Options (variable): Max segment size (does not include TCP header, default 536 bytes), Window scale factor, Selective Ack permitted, Timestamp, No-Op, End-of-options 	 Source Port (16 bits): Identifies source user process Destination Port (16 bits) 21 = FTP, 23 = Telnet, 53 = DNS, 80 = HTTP, Sequence Number (32 bits): Sequence number of the first byte in the segment. If SYN is present, this is the initial sequence number (ISN) and the first data byte is ISN+1. Ack number (32 bits): Next byte expected header Data offset (4 bits): Number of 32-bit words in the header Reserved (6 bits) Mathington University in St. Low (13) 	TCP Header Fields
мазницкой синустали и от торока и протокования и протоковани	Kind Length Meaning 0 1 End of Valid options in header 1 1 No-op 2 4 Maximum Segment Size 3 3 Window Scale Factor 8 10 Timestamp Image: Stop looking for further option No-op: Ignore this byte. Used to align the next option on a 4-byte word boundary Max Segment Size (MSS): Does not include TCP header	 Control (6 bits): Urgent pointer field significant, Ack field significant, Push function, Reset the connection, Synchronize the sequence numbers, No more data from sender URG ACK PSH RST SYN FIN Window (16 bits): Will accept [Ack] to [Ack]+[window]-1 Will accept [Ack] to [Ack]+[window]-1 Washington University in St. Lowid Number St. 100 Not St. 10	TCP Header (Cont)

Washington University in St. Louis http://www.cse.wustl.edu/~jain/cse473-16/ ©2016 Raj Jain	Raj Jain		Scan This to Download These Slides	Washington University in St. Louis <u>http://www.csc.wustl.edv/~jain/csc473-16/</u> ©2016 Raj Jain 3-61	SACK Selective Acknolowledgement	RTT Round-Trip Time SA Source Address	RST Reset	RFC Request for Comments	D PBX Private Branch Exchange	□ MSS Maximum segment size	KB Kilo-Byte	IP Internet Protocol ISN Initial Sections Number	IETF Internet Engineering Task Force	HTTP Hyper-Text Transfer Protocol	FTP File Transfer Protocol Ge Book N	Acronyms (Cont)
Audio/Video Recordings and Podcasts of Professor Raj Jain's Lectures, https://www.youtube.com/channel/UCN4-5wzNP9-ruOzOMs-8NUw Washington University in St. Louis https://www.sexwust.edu/-jain/cse473-16/ 3-64	Wireless and Mobile Networking (Spring 2016), http://www.cse.wustl.edu/~jain/cse574-16/index.html CSE571S: Network Security (Fall 2014),	CSE 473s: Introduction to Computer Networks (Course Overview), <u>http://www.cse.wustl.edu/~jain/cse473-16/ftp/i_0int.pdf</u> CSE473S: Introduction to Computer Networks (Fall 2016), http://www.cse.wustl.edu/~jain/cse473-16/index.html	Related Modules	Washington University in St. Louis <u>http://www.csc.wustl.edu/-jain/csc473-16</u> ©2016 Raj Jain 3-62					VCI Virtual Circuit Identifiers	D URG Urgent	IDP [Jser Datagram Protoco]	TCD Transmission Control Destand	Synchronization	Source for SSThresh Slow Start Threshold	SMTP Simple Mail Transfer Protocol SD Source Dort	Acronyms (Cont)