Network Management

Raj Jain

Washington University in Saint Louis Saint Louis, MO 63130 Jain@wustl.edu

Audio/Video recordings of this lecture are available on-line at:

http://www.cse.wustl.edu/~jain/cse473-10/

Washington University in St. Louis

CSE473s

- □ What is Network Management and How?
- OSI Net Management Standards
- □ ASN.1
- Management Information Base (MIB)
- SNMP: Protocol, Message formats
- □ SNMP V2 and SNMP V3

Note: This class lecture is based on Chapter 9 of the textbook (Kurose and Ross) and the figures provided by the authors.

What is Network Management?

- □ Traffic on Network = Data + Control + Management
- □ **Data** = Bytes/Messages sent by users
- Control = Bytes/messages added by the system to properly transfer the data (e.g., routing messages)
- Management = Optional messages to ensure that the network functions properly and to handle the issues arising from malfunction of any component
- If all components function properly, control is still required but management is optional.
- **Examples:**
 - □ Detecting failures of an interface card at a host or a router
 - □ Monitoring traffic to aid in resource deployment
 - □ Intrusion Detection

Components of Network Management

1. Performance Management:

Measure, report, analyze, and control traffic, messages

- 2. Fault Management: Detect, log, and respond to fault conditions
- **3.** Configuration Management: Track and control which devices are on or off
- 4. Accounting Management:

Monitor resource usage for records and billing

5. Security Management:

Enforce policy for access control, authentication, and authorization

How is Network Managed?

- □ Management = Initialization, Monitoring, Control
- Manager, Agents, and
 Management Information Base (MIB)

OSI Net Management Standards

- Common Management Information Protocol (CMIP)
- Common Management Information Service (CMIS)
- □ CMIP is the management (application layer) protocol
- □ CMIS is the service interface to CMIP
- It was expected that OSI management standards will eventually be used in the Internet. So a tentative simple solution was developed for the time being: Simple Network Management Protocol (SNMP)
- SNMP is now used throughout.
 CMIP/CMIS is being replaced by SNMP.

Internet Management Framework

- Structure of Management Information (SMI): Data definition language for objects ASN.1 was defined by ISO and is used in SNMP.
- 2. Management Information Base (MIB): Distributed network management data
- SNMP protocol:
 Manager ↔ Managed object communication
- 4. Security, administration capabilities: Major addition in SNMPv3

ASN.1

- Abstract Syntax Notation One
- □ Joint ISO and ITU-T standard, Original 1984, latest 2002.
- □ Used to specify protocol data structures
- X.400 electronic mail, X.500 and LDAP directory services, H.323 VOIP, SNMP, etc use ASN.1
- Pre-Defined: 1=Boolean, 2=Integer, 3=Bit String,
 4=Octet String, 5=Null, 6=Object Identifier, 9=Real
- Constructed: SEQUENCE (structure), SEQUENCE OF (lists), CHOICE, ...

SMI Base Data Types

Data Type	Description					
INTEGER	ASN.1 32-bit integer between -2^{31} and $2^{31}-1$					
Integer32	32-bit integer between -2^{31} and $2^{31}-1$					
Unsigned32	Unsigned 32-bit integer between 0 and 2 ³² -1					
OCTET STRING	ASN.1 byte string for binary or text up to 65,535 bytes					
	long					
OBJECT	ASN.1 format administratively assigned object identifier					
IDENTIFER						
IPaddress	32-bit Internet address in network-byte order					
Counter32	32-bit counter that increases from 0 to 2^{32} -1 and wraps to					
	0					
Counter64	64-bit counter					
Gauge32	32-bit integer that does not count above 2^{32} -1 or below 0					
TimeTicks	Time interval measured in 1/100 th of a second					
Opaque	Uninterpreted ASN.1 string (needed for backward					
	compantibility)					
Washington University in St. Louis	CSE473s ©2010 Raj Jain					

ASN.1 Example

AddressT	ype ::= SEQUENCE $\{$
name	OCTET STRING,
number	INTEGER,
street	OCTET STRING,
city	OCTET STRING,
state	OCTET STRING,
zipCode	INTEGER
}	

Encoding Rules

- □ ASN.1 only specifies the structure.
- Encoding rules indicate how to encode the structure in to bits on the wire.
- Examples: Basic Encoding Rules (BER), Packed Encoding Rules (PER), XML Encoding rules (XER), Distinguished Encoding Rules (DER), ...
- □ In BER, everything is encoded as Tag-Length-Value.

BER Example															
John Miller, 126 Main Street, Big City, MO 63130															
30 2	F	04	0	B	4A	6F	68	6E	20	4D	69	6C	6C	65	72
Seq. L	en (Oct Sti	r L	en	J	0	h	n		Μ	i	1	1	e	r
02 01 Int Lei	- 7E n 12	26													
04	0B	4D	61	69	6E	20	53	74	72	65	65	74			
Oct str	Len	Μ	a	i	n		S	\mathbf{t}	r	e	e	\mathbf{t}			
04 Oct Str	08	42 B	69 i	67 	20	43 C	69	74 t	79 V]					
04 Oct Str	02 Len	4D M	4F 0	02 02 In	2 0 .t le	2 H en	$\begin{array}{c c} 1 \\ \hline \\$	9A 0 1	0 Null]					
Washington U	University	y in St. Lo	ouis				<u>CSE47</u> 9-13	<u>3s</u>					C	0 <u>2010 R</u>	aj Jain

Management Information Base

- □ MIBs follow a fixed naming and structuring convention
 ⇒ Structure of Management Information (SMI)
- These conventions were adopted from Common management Information Protocol (CMIP) designed by ISO
- □ All names are globally unique
- All nodes of the name tree are assigned numeric values by standards authorities iso.org.dod.internet.mgmt.mib.ip.ipInReceives 1.3.6.1.2.1.4.3
- □ Tables rows are referenced by appending the index
- All names are specified using a subset of Abstract Syntax Notation (ASN.1)
- ASN.1 specifies notation (that humans can read) and encoding (representation and ranges)

Washington University in St. Louis

CSE473s

MIB Naming Example: UDP Module

Object ID	Name	Туре	Comments
1.3.6.1.2.1.7.1	UDPInDatagrams	Counter32	total # datagrams delivered at this node
1.3.6.1.2.1.7.2	UDPNoPorts	Counter32	# underliverable datagrams no app at portl
1.3.6.1.2.1.7.3	UDInErrors	Counter32	# undeliverable datagrams all other reasons
1.3.6.1.2.1.7.4	UDPOutDatagram	s Counter32	# datagrams sent
1.3.6.1.2.1.7.5	udpTable	SEQUEN	CE one entry for each port in use by app, gives port # and IP address

MIB Definition: Example

```
ipAddrTable ::= SEQUENCE of ipAddrEntry
ipAddrEntry ::= SEQUENCE {
ipAdEntAddr ipAddress,
ipAdEntIfIndex INTEGER,
ipAdEntNetMask ipAddress,
ipAdEntBcastAddr ipAddress,
ipAdEntReasmMaxSize INTEGER (0..65535)
ipAddrEntry {ipAddrTable 1}
ipAdEntNetMask {ipAddrTable 3}
```

SNMP

- Based on Simple Gateway Management Protocol (SGMP) RFC 1028 – Nov 1987
- □ SNMP = Simply <u>Not</u> <u>My</u> <u>P</u>roblem [Marshall Rose] Simple Network Management Protocol
- **RFC** 1058, April 1988
- Only Five commands

Command	Meaning	
get-request	Fetch a value	
get-next-request	Fetch the next value (in a	tree)
get-response	Reply to a fetch operation	
set-request	Store a value	
trap	An event	
Washington University in St. Louis	CSE473s	©2010 Raj Jain
	9-18	

SNMPv2 PDU Types

SNMPv2 PDU	Sender-	Description
Туре	Receiver	
GetRequest	Manager-	Get value of one or more MIB
	to-agent	object instances
GetNextRequest	Manager-	Get value of next MIB object
	to-agent	instance in list or table
GetBulkRequest	Manager-	Get values in large block of data,
	to-agent	e.g., whole table
InformRequest	Manager-	Inform remote managing entity of
	to-manager	MIB values
SetRequest	Manager-	Set value of one or more MIB
_	to-agent	object
Response Agent-to-		GetRequest, GetNextRequest,
	Manager	GetBulkRequest,SetRequest or
		InformRequest
SNMPv2 Trap	Angent-to-	Inform manager of exceptional
ngton University in St. Louis		CSE473s ©2010 Raj

SNMPv1 Configuration Manager sends request to UDP port 161. Agents send traps to UDP port 162 Host Management station User Network Manager Agent manager processes process processes Central SNMP SNMP FTP. etc. MIB UDP UDP TCP IP IP Network-dependent Network-dependent protocols protocols Internet Host Router User Agent Agent process processes process SNMP FTP, etc. SNMP UDP TCP UDP IP IP Network-dependent Network-dependent protocols protocols Washington University in St. Louis CSE473s ©2010 Raj Jain 9-22

SNMPv2

- Improved security: authentication and integrity using Data Encryption Standard (DES)
- □ *inform request* ⇒ Multiple manager coordination
 Locking mechanisms prevent multiple managers from writing at the same time
- \Box get bulk \Rightarrow Better table handling
- Confirmation option for Traps
 ⇒ Agents can ensure that trap was received correctly.
- New Error codes: noSuchName, badValue, readOnly
 Reference: RFC 1441, April 1993 and more

SNMPv3

- □ Security update of SNMPv2
- Authentication: Message authentication code with a shared secret key
- □ Privacy: Encryption using a shared secret key
- Access Control: Each manager can have a different set of read/write permission for various component of MIB
- □ Ref: RFC 2570, April 1999 and more

SNMPv3 Engine

- SNMP Applications generate GetRequest, SetRequest, ..., commands
- SNMP Engine where SNMP version is determined, wrapped in a header containing version, message ID, size and then in a security wrapper.

- □ Management = Initialization, Monitoring, and Control
- **SNMP** = Only 5 to 7 commands
- □ Standard MIBs defined for each object
- Uses ASN.1 encoding
- SNMPv2 fixed issues with bulk requests and simple security
- □ SNMPv3 added security

Review Exercises

- **Try but do not submit**
- □ Review Questions: R1 through R12
- Problems P1 through P8
- □ Read Pages 771-800

Homework 9 □ What would be the BER encoding of {firstname "Ed"} {weight 259}? ASN.1 type for octet strings is 4 and for integers it is 2.