Network Management

Raj Jain

Washington University in Saint Louis Saint Louis, MO 63130

Jain@wustl.edu

Audio/Video recordings of this lecture are available on-line at:

http://www.cse.wustl.edu/~jain/cse473-09/

Washington University in St. Louis

CSE473s

- What is Network Management and How?
- OSI Net Management Standards
- □ ASN.1
- Management Information Base (MIB)
- SNMP: Protocol, Message formats
- SNMP V2 and SNMP V3

Note: This class lecture is based on Chapter 9 of the textbook (Kurose and Ross) and the figures provided by the authors.

Washington University in St. Louis

CSE473s

What is Network Management?

- □ Traffic on Network = Data + Control + Management
- □ Data = Bytes/Messages sent by users
- □ Control = Bytes/messages added by the system to properly transfer the data (e.g., routing messages)
- Management = Optional messages to ensure that the network functions properly and to handle the issues arising from malfunction of any component
- ☐ If all components function properly, control is still required but management is optional.
- Examples:
 - □ Detecting failures of an interface card at a host or a router
 - □ Monitoring traffic to aid in resource deployment
 - □ Intrusion Detection

Washington University in St. Louis

CSE473s

Components of Network Management

1. Performance Management:

Measure, report, analyze, and control traffic, messages

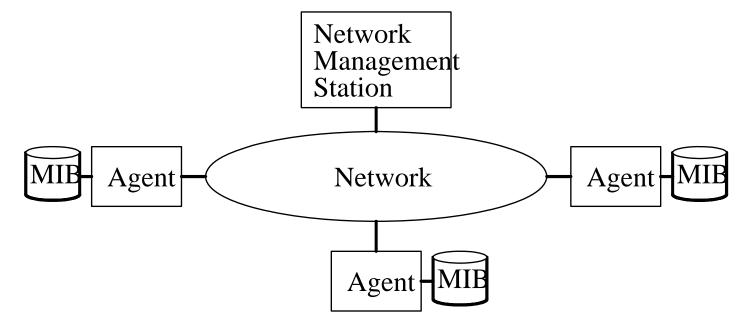
2. Fault Management:

Detect, log, and respond to fault conditions

3. Configuration Management:

Track and control which devices are on or off

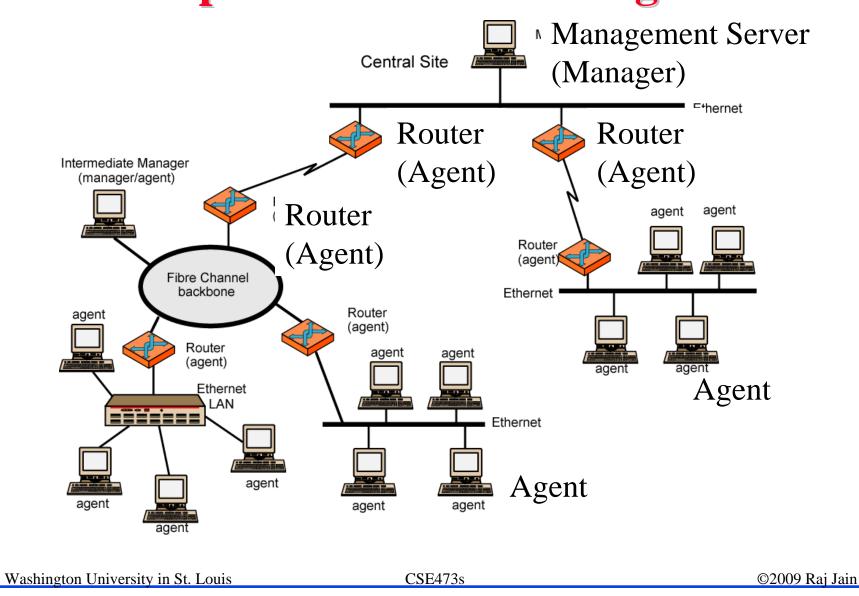
4. Accounting Management:


Monitor resource usage for records and billing

5. Security Management:

Enforce policy for access control, authentication, and authorization

How is Network Managed?


- □ Management = Initialization, Monitoring, Control
- Manager, Agents, andManagement Information Base (MIB)

Washington University in St. Louis

CSE473s

Example of Network Management

OSI Net Management Standards

- □ Common Management Information Protocol (CMIP)
- □ Common Management Information Service (CMIS)
- □ CMIP is the management (application layer) protocol
- □ CMIS is the service interface to CMIP
- □ It was expected that OSI management standards will eventually be used in the Internet. So a tentative simple solution was developed for the time being: Simple Network Management Protocol (SNMP)
- SNMP is now used throughout.

 CMIP/CMIS is being replaced by SNMP.

Washington University in St. Louis

CSE473s

Internet Management Framework

- 1. Structure of Management Information (SMI):
 Data definition language for objects
 ASN.1 was defined by ISO and is used in SNMP.
- 2. Management Information Base (MIB): Distributed network management data
- 3. SNMP protocol:
 Manager ↔ Managed object communication
- 4. Security, administration capabilities: Major addition in SNMPv3

Washington University in St. Louis

CSE473s

ASN.1

- Abstract Syntax Notation One
- □ Joint ISO and ITU-T standard, Original 1984, latest 2002.
- Used to specify protocol data structures
- X.400 electronic mail, X.500 and LDAP directory services, H.323 VOIP, SNMP, etc use ASN.1
- □ Pre-Defined: 1=Boolean, 2=Integer, 3=Bit String, 4=Octet String, 5=Null, 6=Object Identifier, 9=Real
- □ Constructed: SEQUENCE (structure), SEQUENCE OF (lists), CHOICE, ...

Washington University in St. Louis

CSE473s

SMI Base Data Types

Data Type	Description
INTEGER	ASN.1 32-bit integer between -2 ³¹ and 2 ³¹ -1
Integer32	32-bit integer between -2^{31} and 2^{31} -1
Unsigned32	Unsigned 32-bit integer between 0 and 2 ³² -1
OCTET STRING	ASN.1 byte string for binary or text up to 65,535 bytes
	long
OBJECT	ASN.1 format administratively assigned object identifier
IDENTIFER	
IPaddress	32-bit Internet address in network-byte order
Counter32	32-bit counter that increases from 0 to 2^{32} -1 and wraps to
	0
Counter64	64-bit counter
Gauge32	32-bit integer that does not count above 2^{32} -1 or below 0
TimeTicks	Time interval measured in 1/100 th of a second
Opaque	Uninterpreted ASN.1 string (needed for backward
	compantibility)
Washington University in St. Lo	uis CSE473s ©2009 Raj Jain

ASN.1 Example

```
AddressType ::= SEQUENCE {
name    OCTET STRING,
number    INTEGER,
street    OCTET STRING,
city    OCTET STRING,
state    OCTET STRING,
zipCode    INTEGER
}
```

Washington University in St. Louis

CSE473s

Encoding Rules

- □ ASN.1 only specifies the structure.
- Encoding rules indicate how to encode the structure in to bits on the wire.
- Examples: Basic Encoding Rules (BER), Packed Encoding Rules (PER), XML Encoding rules (XER), Distinguished Encoding Rules (DER), ...
- □ In BER, everything is encoded as Tag-Length-Value.

BER Example

□ John Miller, 126 Main Street, Big City, MO 63130

30	80	04	0B	4A	6F	68	6E	20	4D	69	6C	6C	65	72
Seq.	Len	Oct Str	Len	J	О	h	n		M	i	l	l	e	r

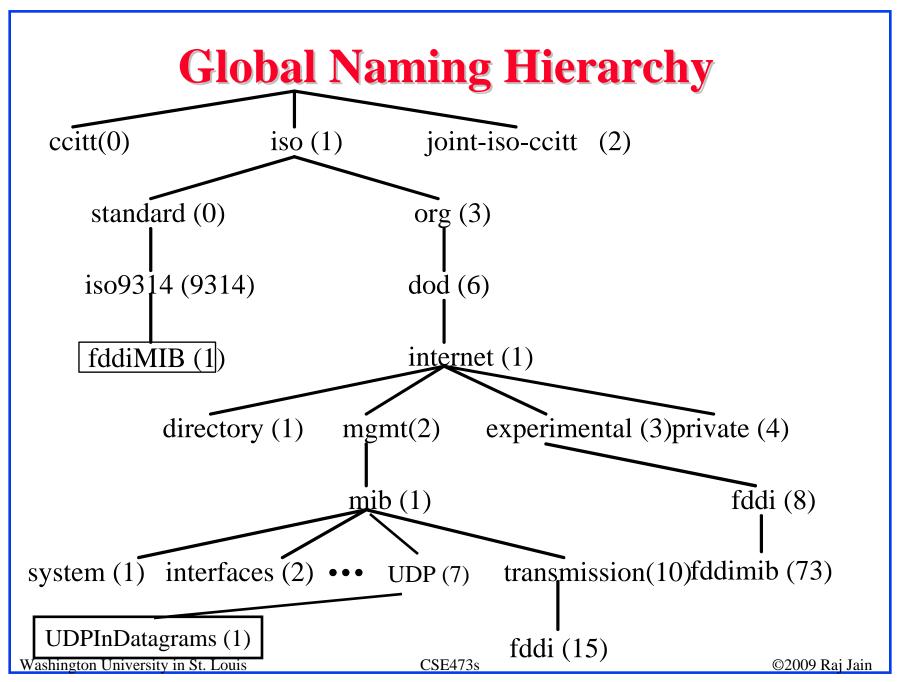
02	01	FE
Int	Len	123

04	0B	4D	61	69	6E	20	53	74	72	65	65	74
Oct str	11	M	a	i	n		S	t	r	e	e	t

04	08	42	69	67	20	43	69	74	79
Oct Str	Len	В	i	g		С	i	t	У

04	02	4D	4F	02	02	F6	96	0
Oct Str	Len	M	О	Int	len	631	30	Null

Washington University in St. Louis


CSE473s

Management Information Base

- MIBs follow a fixed naming and structuring convention
 ⇒ Structure of Management Information (SMI)
- □ These conventions were adopted from Common management Information Protocol (CMIP) designed by ISO
- All names are globally unique
- All nodes of the name tree are assigned numeric values by standards authorities iso.org.dod.internet.mgmt.mib.ip.ipInReceives 1.3.6.1.2.1.4.3
- □ Tables rows are referenced by appending the index
- □ All names are specified using a subset of Abstract Syntax Notation (ASN.1)
- ASN.1 specifies notation (that humans can read) and encoding (representation and ranges)

Washington University in St. Louis

CSE473s

MIB Naming Example: UDP Module

Object ID	Name	Type	Comments
1.3.6.1.2.1.7.1	UDPInDatagrams	Counter32	total # datagrams delivered at this node
1.3.6.1.2.1.7.2	UDPNoPorts	Counter32	# underliverable datagrams no app at portl
1.3.6.1.2.1.7.3	UDInErrors	Counter32	# undeliverable datagrams all other reasons
1.3.6.1.2.1.7.4	UDPOutDatagram	s Counter32	# datagrams sent
1.3.6.1.2.1.7.5	udpTable	SEQUEN	CE one entry for each port in use by app, gives port # and IP address

Washington University in St. Louis

CSE473s

MIB Definition: Example

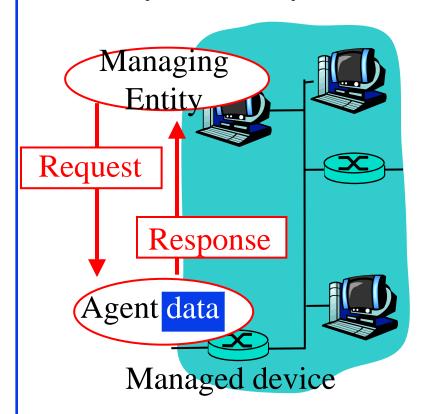
```
ipAddrTable ::= SEQUENCE of ipAddrEntry
ipAddrEntry ::= SEQUENCE {
ipAdEntAddr ipAddress,
ipAdEntIfIndex INTEGER,
ipAdEntNetMask ipAddress,
ipAdEntBcastAddr ipAddress,
ipAdEntReasmMaxSize INTEGER (0..65535)
ipAddrEntry {ipAddrTable 1}
ipAdEntNetMask {ipAddrTable 3}
```

Washington University in St. Louis

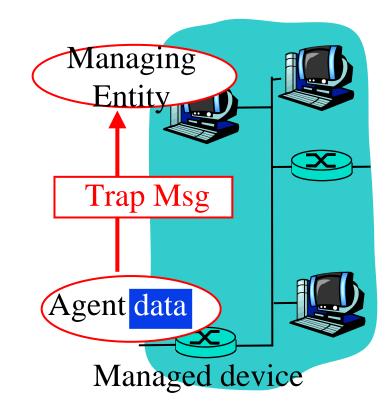
CSE473s

SNMP

- Based on Simple Gateway Management Protocol (SGMP) RFC 1028 – Nov 1987
- □ SNMP = Simply Not My Problem [Marshall Rose]
 Simple Network Management Protocol
- □ RFC 1058, April 1988
- Only Five commands


Command	Meaning
get-request	Fetch a value
get-next-request	Fetch the next value (in a tree)
get-response	Reply to a fetch operation
set-request	Store a value
trap	An event

Washington University in St. Louis


CSE473s

SNMP protocol

Two ways to convey MIB info, commands:

Request/response mode

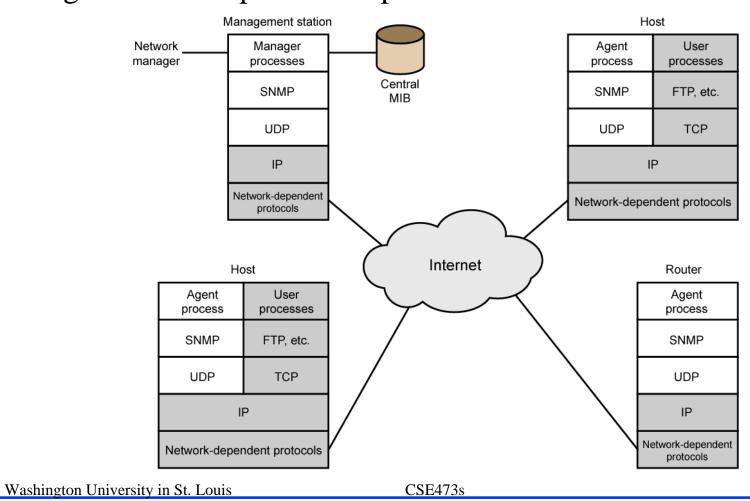
Trap mode

Washington University in St. Louis

CSE473s

SNMPv2 PDU Types

SNMPv2 PDU	Sender-	Description
Type	Receiver	
GetRequest	Manager-	Get value of one or more MIB
	to-agent	object instances
GetNextRequest	Manager-	Get value of next MIB object
	to-agent	instance in list or table
GetBulkRequest	Manager-	Get values in large block of data,
	to-agent	e.g., whole table
InformRequest	Manager-	Inform remote managing entity of
	to-manager	MIB values
SetRequest	Manager-	Set value of one or more MIB
	to-agent	object
Response	Agent-to-	GetRequest, GetNextRequest,
	Manager	GetBulkRequest,SetRequest or
		InformRequest
SNMPv2 Trap	Angent-to-	Inform manager of exceptional


Washington University in St. Louis

CSE473s

SNMP Message Formats Get/set header Variables to get/set PDU Error Request Error Value Name Name Value Status type Index. ld. (Ó-3) (0-5)PDU Trap Specific Agent Addr Time Value Enterprise Name Type Type code stamp (4)Trap header Trap information SNMP PDU Washington University in St. Louis CSE473s ©2009 Raj Jain

SNMPv1 Configuration

■ Manager sends request to UDP port 161.
 Agents send traps to UDP port 162

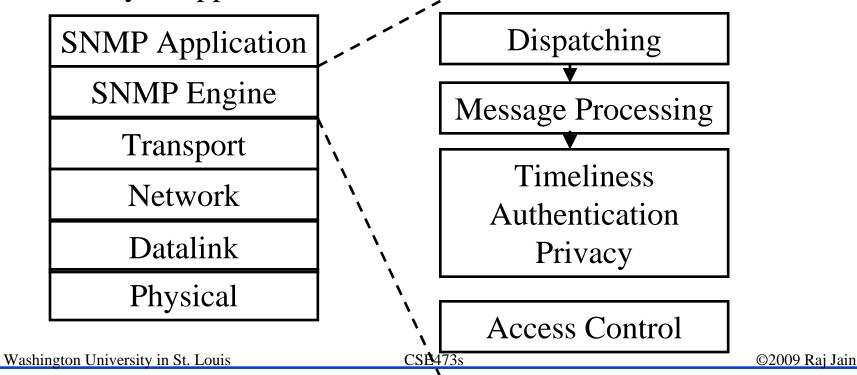
SNMPv2

- □ Improved security: authentication and integrity using Data Encryption Standard (DES)
- □ inform request ⇒ Multiple manager coordination
 Locking mechanisms prevent multiple managers from writing at the same time
- \square get bulk \Rightarrow Better table handling
- Confirmation option for Traps
 - ⇒ Agents can ensure that trap was received correctly.
- □ New Error codes: noSuchName, badValue, readOnly
- □ Reference: RFC 1441, April 1993 and more

Washington University in St. Louis

CSE473s

SNMPv3


- Security update of SNMPv2
- Authentication: Message authentication code with a shared secret key
- □ Privacy: Encryption using a shared secret key
- □ Access Control: Each manager can have a different set of read/write permission for various component of MIB
- □ Ref: RFC 2570, April 1999 and more

Washington University in St. Louis

CSE473s

SNMPv3 Engine

- SNMP Applications generate GetRequest, SetRequest, ..., commands
- SNMP Engine where SNMP version is determined, wrapped in a header containing version, message ID, size and then in a security wrapper.

- Management = Initialization, Monitoring, and Control
- \square SNMP = Only 5 to 7 commands
- Standard MIBs defined for each object
- Uses ASN.1 encoding
- SNMPv2 fixed issues with bulk requests and simple security
- SNMPv3 added security

Washington University in St. Louis

CSE473s

Review Exercises

- □ Try but do not submit
- □ Review Questions: R1 through R12
- Problems P1 through P8

Washington University in St. Louis

CSE473s