# Multimedia Networking

#### Raj Jain

Washington University in Saint Louis Saint Louis, MO 63130

Jain@wustl.edu

Audio/Video recordings of this lecture are available on-line at:

http://www.cse.wustl.edu/~jain/cse473-09/

Washington University in St. Louis

CSE473S



- Multimedia Networking Applications
- Real-Time Streaming Protocol (RTSP)
- Real-Time Transport Protocol (RTP)
- Session Initiation Protocol (SIP)
- Scheduling Mechanisms
- Integrated Services, RSVP, Differentiated Services

**Note**: This class lecture is based on Chapter 7 of the textbook (Kurose and Ross) and the figures provided by the authors.

Washington University in St. Louis

CSE473S

#### Multimedia Networking Applications

- Streaming Stored Audio and Video
  - □ Stored Media: Fast rewind, pause, fast forward
  - □ Streaming: simultaneous play out and download
  - □ Continuous play out: Delay jitter smoothed by playout buffer
- Streaming Live Audio and Video: IPTV and Internet Radio
  - □ No fast-forward
- ☐ High data rate to large number of users
  - $\Rightarrow$  multicast or P2P,
    - delay jitter controlled by caching,
- Real-Time Interactive Audio and Video: Internet Telephone, Video Conferencing
  - □ Delay<400 ms.

Washington University in St. Louis

CSE473S

#### **Multimedia on Internet**

- Best Effort Service
- □ TCP not used due to retransmission delays
- Limited packet loss tolerated
- Packet jitter smoothed by buffering
- □ Hard Guarantee: Min Throughput, Max Delay, Max delay jitter
- □ Soft Guarantee: Quality of service with a high probability
- Protocol for Bandwidth Reservation and Traffic Description
- Scheduling to honor bandwidth reservation
- High Bandwidth
- Content Distribution Networks: Akamai

Washington University in St. Louis

CSE473S

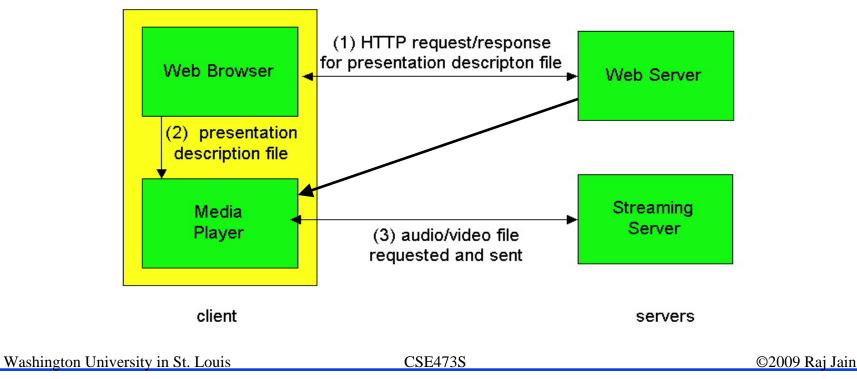
# **Audio Compression Standards**

- Arr 4kHz audio Arr Audio sampled at 8000 samples per second
- □ 256 levels per sample  $\Rightarrow$  8 bits/sample  $\Rightarrow$  64 kbps
- Pulse Code Modulation (PCM)
- □ CD's use 44.1 kSamples/s, 16 b/sample ⇒ 705.6 kbps (mono) or 1.411 Mbps (Stereo)
- □ GSM Cell phones: 13 kbps
- □ G.711: 64 kbps
- □ G.729: 8 kbps
- □ G.723.3: 6.4 and 5.3 kbps
- MPEG 1 Layer 3 (MP3): 96 kbps, 128 kbps, or 160 kbps

Washington University in St. Louis

CSE473S

# Video Compression Standards


- Moving Pictures Expert Group (MPEG)
- □ MPEG 1: CD quality video (1.5 Mbps)
- MPEG 2: DVD quality Video 3-6 Mbps
- □ MPEG 4: Low-rate high-quality video (.divx or .mp4)
- □ H.261

Washington University in St. Louis

CSE473S

# Web Server vs. Streaming Server

- □ Web Servers sends the whole file as one object
- □ Streaming Server sends at a constant rate



# **Real-Time Streaming Protocol (RTSP)**

- Protocol to control streaming media
- □ Allows start, stop, pause, fast forward, rewinding a stream
- Data and control channels
- All commands are sent on control channel (Port 544)
- □ Specified as a URL in web pages: rtsp://www.cse.wustl.edu/~jain/cse473-09/ftp/i\_7mmn0.rm

#### **RTSP Operation** HTTP GET Web Web presentation desc. browser server **SETUP** PLAY media media stream media player server **PAUSE TEARDOWN** client server Washington University in St. Louis CSE473S ©2009 Raj Jain

# RTSP Exchange Example

C: SETUP rtsp://audio.example.com/twister/audio RTSP/1.0

Transport: rtp/udp; compression; port=3056; mode=PLAY

S: RTSP/1.0 200 1 OK

Session 4231

C: PLAY rtsp://audio.example.com/twister/audio.en/lofi RTSP/1.0

Session: 4231

Range: npt=0-

C: PAUSE rtsp://audio.example.com/twister/audio.en/lofi RTSP/1.0

Session: 4231

Range: npt=37

C: TEARDOWN rtsp://audio.example.com/twister/audio.en/lofi RTSP/1.0

Session: 4231

S: 200 3 OK

#### Three Approaches For Multimedia Support

#### <u>Integrated services philosophy:</u>

- Fundamental changes in Internet so that apps can reserve endto-end bandwidth
- □ Requires new, complex software in hosts & routers

#### Differentiated services philosophy:

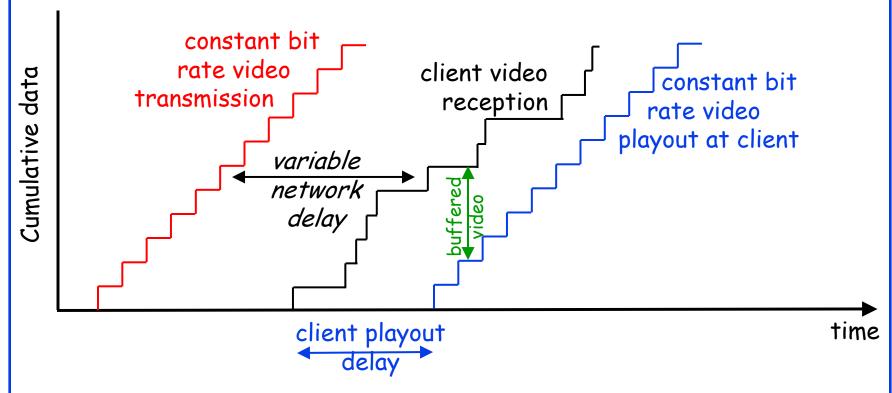
☐ Fewer changes to Internet infrastructure, yet provide 1st and 2nd class service

#### Laissez-faire

- No major changes
- More bandwidth when needed
- Content distribution, application-layer multicast

Washington University in St. Louis

CSE473S


#### **Multimedia with Best Effort Service**

- □ High Compression  $\Rightarrow$  Low Rate  $\Rightarrow$  Low loss
- □ 1% to 20% loss can be concealed
- □ Forward Error Correction (FEC) can be used to overcome loss.
- End-to-end delay limited to 400 ms
- ☐ Jitter overcome by play out buffer
- □ Large jitter  $\Rightarrow$  Packets arrive too late  $\Rightarrow$  same as Lost
- Each chunk comes with a sequence number and timestamp
- Play out delay can be adaptively adjusted according to measured delay variation

Washington University in St. Louis

CSE473S





- □ Playout delay compensates for network delay, delay jitter
- $\square$  Delay > Playout Delay  $\Rightarrow$  Packet late  $\Rightarrow$  Same as a lost packet

Washington University in St. Louis

CSE473S

# **Adaptive Playout Delay**

- $\Box$   $t_i$  = Sending time
- $\Box$   $r_i$ = Receiving time
- $\square$  Measured delay sample =  $r_i$ - $t_i$
- □ d<sub>i</sub>= Average network delay

$$d_i = (1-a)d_{i-1} + a(r_i-t_i)$$

 $\mathbf{v}_{i}$  Variation of the delay

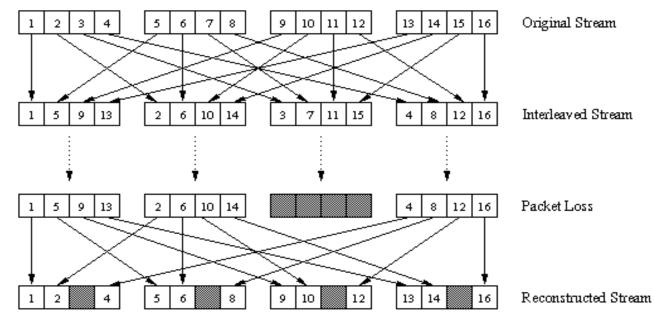
$$v_i = (1-a)v_{i-1} + a|r_i - t_i - d_i|$$

 $\square$  p<sub>i</sub>= Playout time

$$p_i = t_i + d_i + Kv_i$$

□ Here K is a constant, say 4.

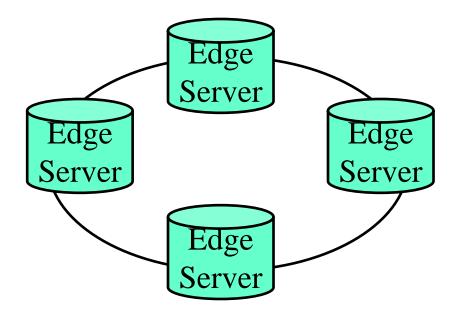
Washington University in St. Louis


CSE473S

#### **Recovering From Packet Loss**

- Forward Error Correction
- □ Send n+1 packets in place of n packets
- □ Send a lower-resolution stream in addition
- Play out the old syllable

Washington University in St. Louis

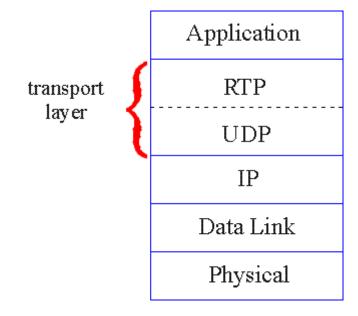

■ Busty Loss ⇒ Interleave audio/video frames



CSE473S

#### **Content Distribution Networks**

■ Authoritative DNS server resolves the server address according to the requester's IP address




Washington University in St. Louis

CSE473S

# Real-Time Transport Protocol (RTP)

- Common sublayer between applications and UDP
- Provides sequence numbers, timestamps, and other facilities
- Supports both unicast and multicast



Washington University in St. Louis

CSE473S

#### **RTP Packet Format**



□ SSRC = Synchronization Source Identifier = Stream #

| <b>Payload</b> | Coding      | Rate     |
|----------------|-------------|----------|
| <b>Type</b>    |             |          |
| 0              | PCM mu-law  | 64 kbps  |
| 3              | GSM         | 13 kbps  |
| 7              | LPC         | 2.4 kbps |
| 26             | Motion JPEG |          |
| 31             | H.261       |          |
| 33             | MPEG2 video |          |

Washington University in St. Louis

CSE473S

#### RTP Control Protocol (RTCP)

- Used to send report about reception quality back to sender
- □ Also used by sender to report stream information
- Can be used to adjust the transmission speed, quality, or for diagnosis
- SSRC
- Fraction of packets lost
- Last sequence number received
- Inter-arrival jitter
- □ Receiver report rate is adjusted inversly to number of receivers
- Sender report rate is adjusted inversly to number of senders
- □ Total RTCP traffic < 5% of media datarate

Washington University in St. Louis

CSE473S

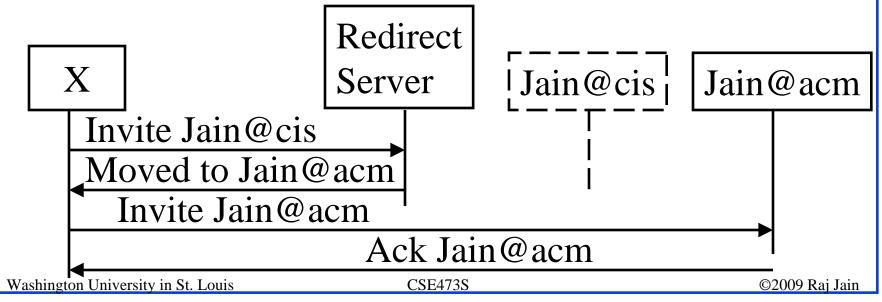
#### **Session Initiation Protocol (SIP)**

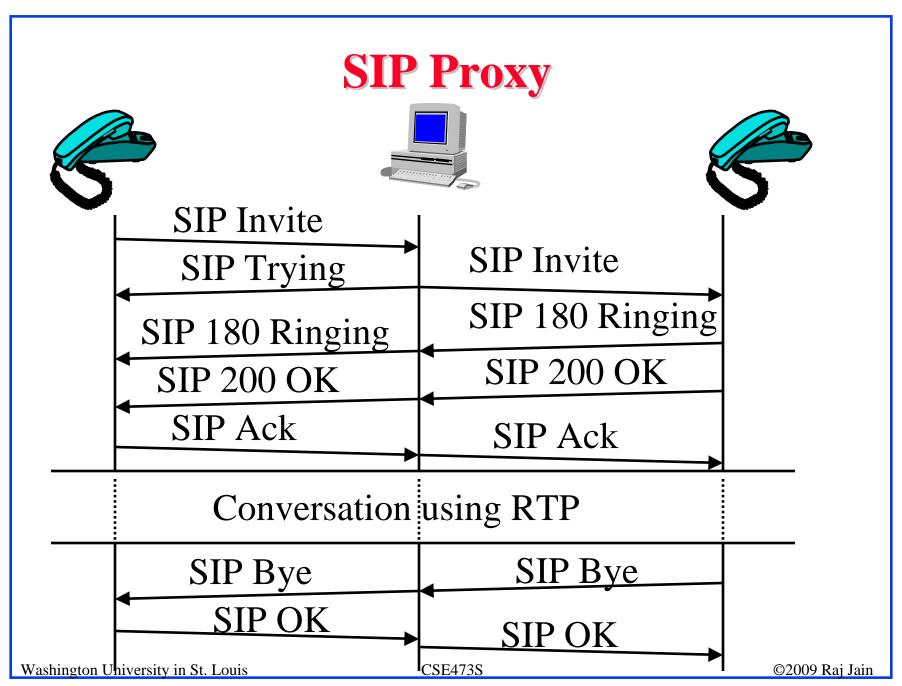
- Application level signaling protocol for voice and video conferencing over Internet
- □ Allows creating, modifying, terminating sessions with one or more participants
- □ Carries session descriptions (media types) for user capabilities negotiation
- □ Supports user location, call setup, call transfers
- Supports mobility by proxying and redirection

Washington University in St. Louis

CSE473S

#### SIP (Cont)


- □ SIP Uniform Resource Identfiers (URIs):
  Similar to email URLs
  sip:jain@cis.ohio-state.edu
  sip:+1-614-292-3989:123@osu.edu?subject=lecture
- □ SIP can use UDP or TCP
- □ SIP messages are sent to SIP servers:
  - □ Registrar: Clients register and tell their location to it
  - □ Location: Given name, returns possible addresses for a user. Like Directory service or DNS.
  - □ Redirect: Returns current address to requesters
  - □ Proxy: Intermediary. Acts like a server to internal client and like a client to external server


Washington University in St. Louis

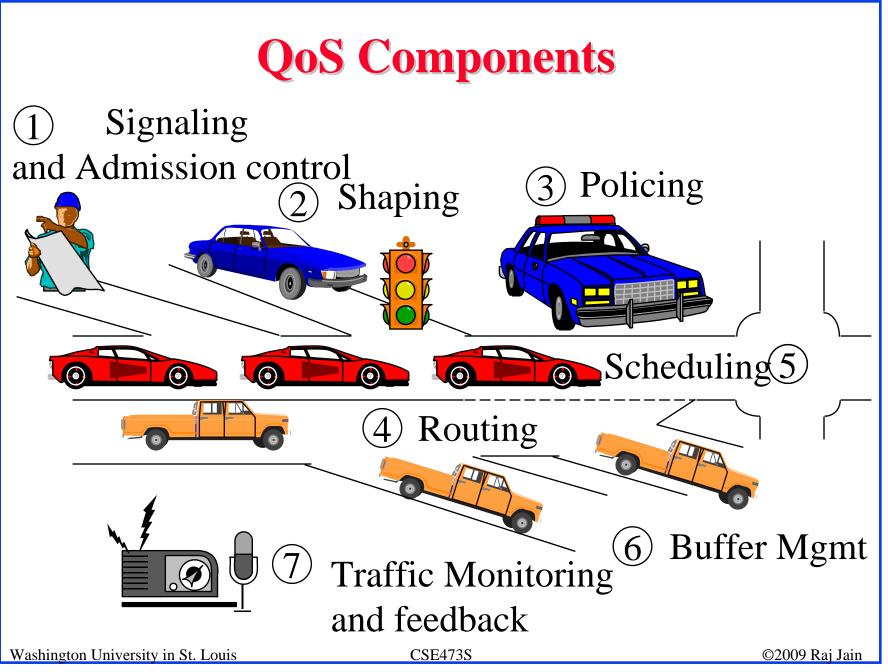
CSE473S

# **Locating using SIP**

- □ Allows locating a callee at different locations
- □ Callee registers different locations with Registrar
- □ SIP Messages: Ack, Bye, Invite, Register, Redirection, ...

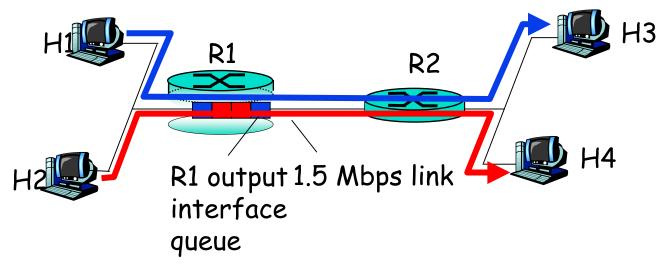





#### **H.323 Protocols**

- □ Multimedia over LANs, V1 (June 96), V2(Feb 98)
- □ Provides component descriptions, signaling procedures, call control, system control, audio/video codecs, data protocols

| Video                 | Audio                                     | Control and Management Data |                |                      | Data  |       |
|-----------------------|-------------------------------------------|-----------------------------|----------------|----------------------|-------|-------|
| H.261<br>H.263        | G.711, G.722,<br>G.723.1, G.728,<br>G.729 | RTCP                        | H.225.0<br>RAS | H.225.0<br>Signaling |       |       |
| RTP                   |                                           | X.224 Class 0               |                |                      | T.125 |       |
| UDP                   |                                           | TCP                         |                |                      | T.123 |       |
| Network (IP)          |                                           |                             |                |                      |       | 1.123 |
| Datalink (IEEE 802.3) |                                           |                             |                |                      |       |       |


Washington University in St. Louis

CSE473S



#### **Multiple Classes of Service**

- □ Flow Classification: Based on Source IP, Dest IP, Source Port, Dest Port, Type of Service, ...
- Differentiation: Routers can provide different service to different traffic
- □ Isolation: One class cannot affect other classes severly



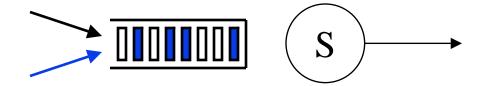
Washington University in St. Louis

CSE473S

#### **Scheduling Mechanisms**

How to service multiple flows?

- ☐ First Come First Served Scheduling
- Priority Queueing
- Round Robin Scheduling
- Generalized Processor Sharing
- Fair Queueing
- Weighted Fair Queueing (WFQ)

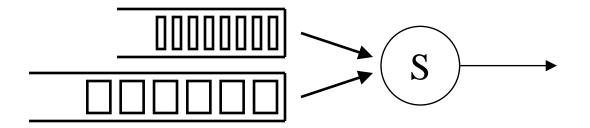

**Desired Properties:** 

- □ Fair
- □ Work-Conserving: Do not waste resources if there is no traffic

Washington University in St. Louis

CSE473S

# First Come First Served Scheduling

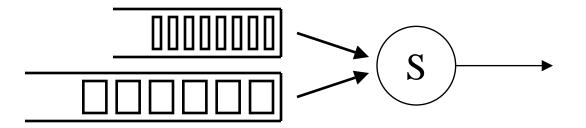



- □ Unfair: Overloading flows get more service
- No isolation among users

Washington University in St. Louis

CSE473S

# **Priority Queueing**

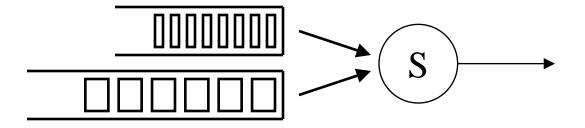



- □ Priority 0 through n-1
- Priority 0 is always serviced first.
- □ Priority i is serviced only if 0 through i-1 are empty
- Highest priority has the lowest delay, highest throughput, lowest loss
- Lower priority classes may be starved if higher priority are overloaded

Washington University in St. Louis

CSE473S

#### **Round Robin Scheduling**

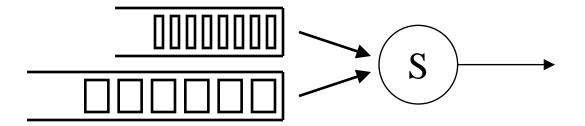



- □ Round-robin among flows
- Each flow gets the same number of packets
- □ Flows with larger packets get more bandwidth

Washington University in St. Louis

CSE473S

# **Generalized Processor Sharing**

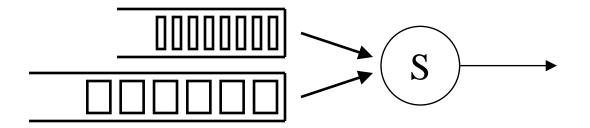



- □ Bit-level round robin
- □ Each flow gets the same number of bits/sec
- □ Too much work

Washington University in St. Louis

CSE473S

# Fair Queueing



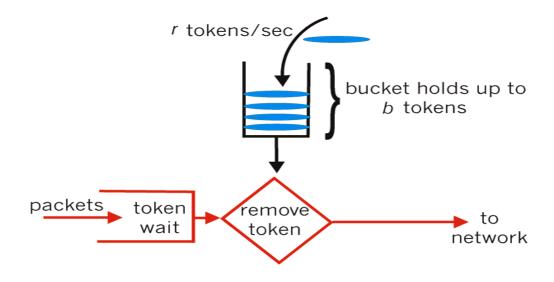

- □ Bit-level round robin but packet level scheduling
- □ Count the packet size and determine which packet would finish first. Serve that packet.
- □ Each flow gets the same number of bits/sec

Washington University in St. Louis

CSE473S

# Weighted Fair Queueing (WFQ)



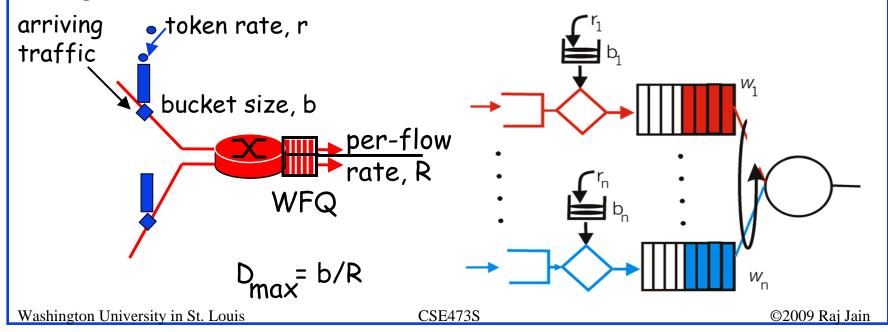

- □ Fair queueing with different weight for each queue
- □ Flow 1 gets x bit/sec
- □ Flow 2 gets y bit/sec
- □ Flow n gets z bit/sec
- ☐ Here, x, y, z are weights

Washington University in St. Louis

CSE473S

# **Policing**

- Ensuring that sources do not send traffic at a rate higher than agreed
- □ Leaky bucket: Average Rate and maximum burst size




Washington University in St. Louis

CSE473S

# Maximum Delay with WFQ and Policing

- □ Max Delay  $d_{max} = b_i/(R w_i/\Sigma w_j)$
- □ Here,
- $\Box$   $b_i$ =Burst size of ith flow
- □ R=Service Rate
- □ W<sub>i</sub>=Weight of ith flow



#### **Integrated Services**

- 1. Best Effort Service.
- 2. Controlled-Load Service: Performance as good as in an unloaded datagram network. No quantitative assurances
- 3. Guaranteed Service:
  - □ Firm bound on data throughput and <u>delay</u>.

Washington University in St. Louis

CSE473S

#### **RSVP**

- □ Resource ReSerVation Protocol
- □ Internet signaling protocol
- □ Carries resource reservation requests through the network including traffic specs, QoS specs, network resource availability
- Sets up reservations at each hop



Washington University in St. Louis

CSE473S

#### **Differentiated Services**



- □ IPv4: 3-bit precedence + 4-bit ToS
- □ OSPF and integrated IS-IS can compute paths for each ToS
- Many vendors use IP precedence bits but the service varies ⇒ Need a standard ⇒ Differentiated Services
- $\square$  Edge routers can mark the packets  $\Rightarrow$  Set ToS field
- □ Core routers use ToS field to provide "Per-Hop-Behavior"

Washington University in St. Louis

CSE473S

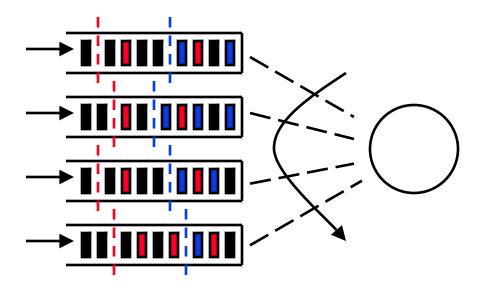
# **Per-hop Behaviors**



- □ Externally Observable Forwarding Behavior
- □ x% of link bandwidth
- ☐ Minimum x% and fair share of excess bandwidth
- □ Priority relative to other PHBs

Washington University in St. Louis

CSE473S


# **Expedited Forwarding**

- ☐ Also known as "Premium Service"
- □ Virtual leased line
- □ Guaranteed minimum service rate
- □ Policed: Arrival rate < Minimum Service Rate
- □ Not affected by other data PHBs
  - ⇒ Highest data priority (if priority queueing)
- □ Code point: 101 110

Washington University in St. Louis

CSE473S

# **Assured Forwarding**

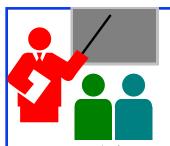


- □ PHB Group
- □ Four Classes: No particular ordering
- ☐ Three drop preference per class

Washington University in St. Louis

CSE473S

# **Assured Forwarding (Cont)**


- DS nodes SHOULD implement all 4 classes and MUST accept all 3 drop preferences. Can implement 2 drop preferences.
- □ Similar to nrt-VBR/ABR/GFR
- Code Points:

| Drop Prec. | Class 1 | Class 2 | Class 3 | Class 4 |
|------------|---------|---------|---------|---------|
| Low        | 010 000 | 011 000 | 100 000 | 101 000 |
| Medium     | 010 010 | 011 010 | 100 010 | 101 010 |
| High       | 010 100 | 011 100 | 100 100 | 101 100 |

□ Avoids 11x000 (used for network control)

Washington University in St. Louis

CSE473S



#### Summary

- Multimedia applications require bounded delay, delay jitter, and minimum throughput
- □ Three Approaches: Service guarantees, Simple priority type service, Increase Capacity
- □ RTSP allows streaming controls like pause, forward, ...
- RTP allows sequencing and timestamping
- SIP allows parameter negotiation and location
- Weighted fair queueing allows packet based fair scheduling
- Integrated Services provides guaranteed services (did not succeed)
- RSVP allows resource reservation
- Differentiated Services allow packets to be marked by edge routers and serviced accordingly by core routers

Washington University in St. Louis

CSE473S