Computer Networks and the Internet

Raj Jain

Washington University in Saint Louis Saint Louis, MO 63130

Jain@wustl.edu

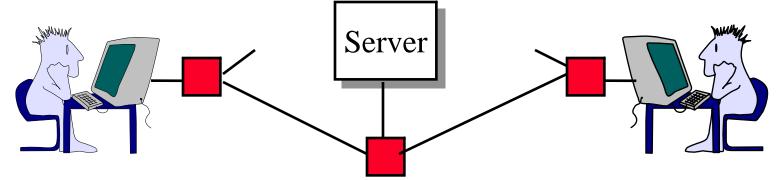
Audio/Video recordings of this lecture are available on-line at:

http://www.cse.wustl.edu/~jain/cse473-09/

Washington University in St. Louis

CSE473S

- 1. Physical Media
- 2. Switching: Circuit vs. Packet
- 3. Internet:Edge, Core
- 4. Network Performance Measures: Delay, Loss, Throughput
- 5. Protocol Layers
- 6. Network Security
- 7. History


Note: This class lecture is based on Chapter 1 of the textbook (Kurose and Ross) and the slides provided by the authors.

Washington University in St. Louis

CSE473S

What is a Network?

- Network: Enables data transfer among nodes
 - □ Generally heterogeneous nodes
 - □ More than 2 nodes
 - □ E.g., Your home or office network

- □ Communication: Two nodes.
 - □ Link level electrical issues.

Washington University in St. Louis

CSE473S

Key Concepts

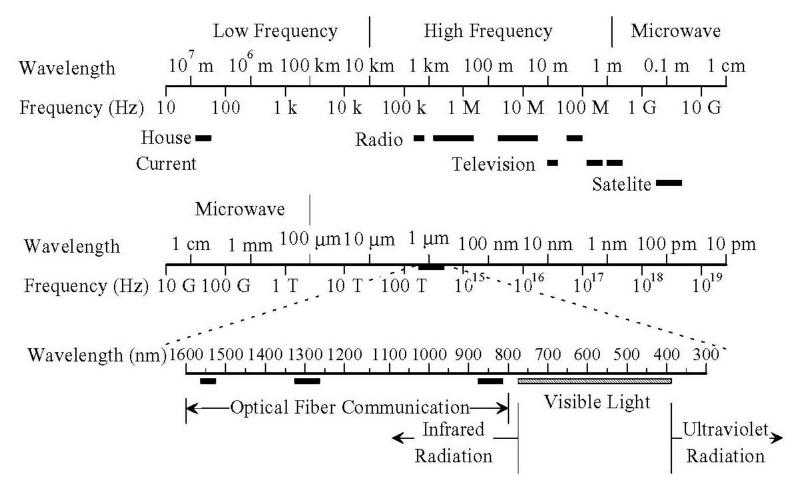
Server

- End Systems: Systems that are sinks or sources of data, e.g., Desktops, Laptops, Servers, Printers, Cell Phones, etc.
- □ Intermediate Systems: Systems that forward/switch data from one link to another, e.g., routers, switches
- **Hosts**: End Systems
- **□ Gateways**: Routers
- Servers: End Systems that provide service, e.g., print server, storage server, Mail server, etc.
- □ Clients: End systems that request service
- □ Links: Connect the systems.

 Characterized by transmission rate, propagation delay

Washington University in St. Louis

CSE473S


Transmission Media

- □ Guided:
 - □ Twisted Pair
 - □ Coaxial cable
 - □ Optical fiber
- **□ Unguided**:
 - □ Microwave
 - □ Satellite
 - □ Wireless

Washington University in St. Louis

CSE473S

Electromagnetic Spectrum

□ Infrared light is used for optical communication

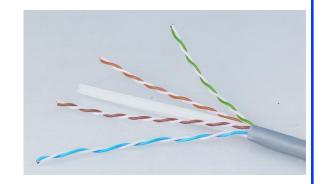
Washington University in St. Louis

CSE473S

Twisted Pair (TP)

- -Separately insulated
- —Twisted together
- —Often "bundled" into cables
- Usually installed in building during construction

(a) Twisted pair


- □ Twists decrease the cross-talk
- □ Neighboring pairs have different twist length
- Most of telephone and network wiring in homes and offices is TP.

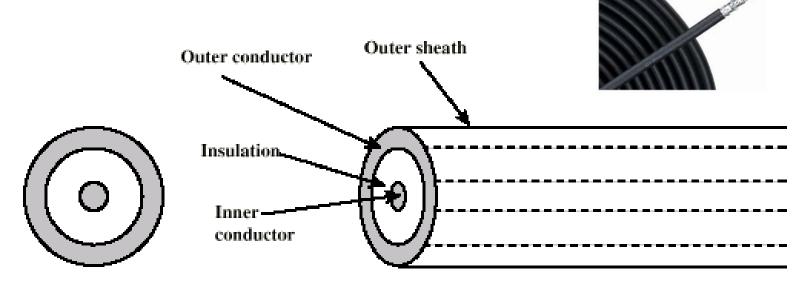
Washington University in St. Louis

CSE473S

Shielded and Unshielded TP

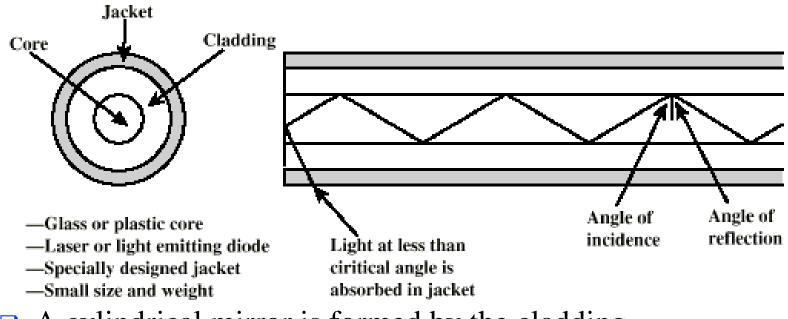
- □ Shielded Twisted Pair (STP)
 - □ Metal braid or sheathing that reduces interference
 - □ More expensive
 - □ Harder to handle (thick, heavy)
 - □ Used in token rings
- Unshielded Twisted Pair (UTP)
 - □ Ordinary telephone wire
 - □ Cheap, Flexible
 - \Rightarrow Easiest to install
 - □ No shielding
 - ⇒ Suffers from external interference
 - □ Used in Telephone and Ethernet

Washington University in St. Louis


CSE473S

UTP Categories

- □ Cat 3
 - □ Up to 16MHz
 - □ Voice grade found in most offices
 - □ Twist length of 7.5 cm to 10 cm
- □ Cat 4
 - □ Up to 20 MHz. Not used much in practice.
- □ Cat 5
 - □ Up to 100MHz
 - □ Used in 10 Mbps and 100 Mbps Ethernet
 - □ Twist length 0.6 cm to 0.85 cm
- □ Cat 5E (Enhanced), Cat 6, Cat 7, ...



- -Outer conductor is braided shield
- -Inner conductor is solid metal
- -Separated by insulating material
- -Covered by padding
- □ Higher bandwidth than UTP. Up to 500 MHz.
- □ Used in cable TV

Washington University in St. Louis

CSE473S

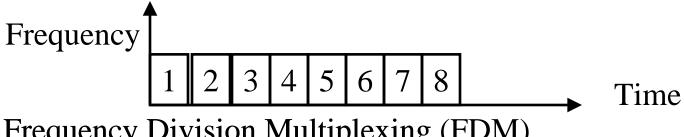
Optical Fiber

- A cylindrical mirror is formed by the cladding
- □ The light wave propagate by continuous reflection in the fiber
- \square Not affected by external interference \Longrightarrow low bit error rate
- □ Fiber is used in all long-haul or high-speed communication
- □ Infrared light is used in communication

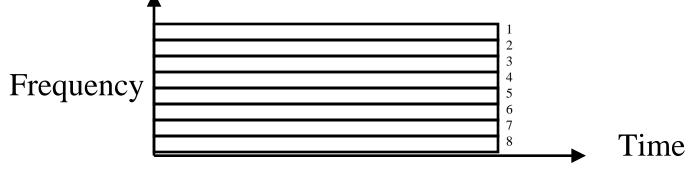
Washington University in St. Louis

CSE473S

Wireless Transmission Frequencies


- □ 2GHz to 60GHz
 - □ Terrestrial Microwave, Satellite Microwave
 - □ Highly directional
 - □ Point to point
- □ 30MHz to 1GHz
 - □ Omni-directional
 - □ Broadcast radio
- \square 3 x 10¹¹ to 2 x 10¹⁴
 - □ Infrared
 - □ Short distance

Washington University in St. Louis

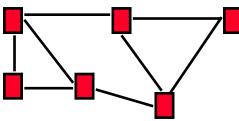

CSE473S

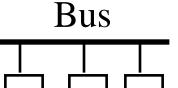
Multiplexing

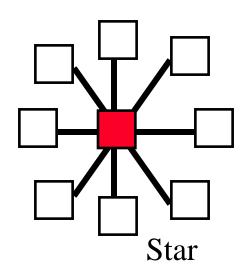
- How multiple users can share a link?
- Time Division Multiplexing (TDM)

Frequency Division Multiplexing (FDM)

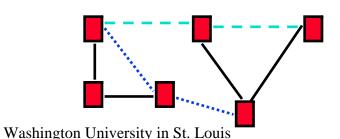
Other multiplexing methods will be covered as needed.

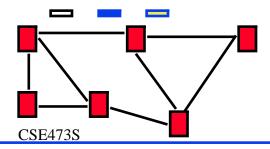

Washington University in St. Louis


CSE473S


Types of Networks

Point to point vs Broadcast


Point-to-Point



- Circuit switched vs packet switched
 - □ Circuit: Bits repeated at every switch along the circuit path
 - □ Packet: Packets are forwarded

Circuit vs. Packet Switching

	Circuit Switching	Packet Switching
Call setup	Required	Optional
Overhead during call	Minimal	Per packet overhead
State	Stateful	No state
Resource Reservation	Easy	Difficult
Quality of Service	Easy	Difficult
Sharing	By overbooking	Easy

- □ Myth: Circuits require dedicated resources
 - \Rightarrow No sharing

True only for constant bit rate (CBR) circuits

Washington University in St. Louis

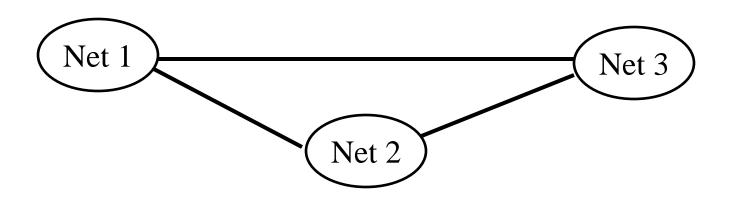
CSE473S

Types of Networks (Cont)

- Enterprise vs Telecom Networks
 Ethernet is the most common interface in Enterprise
 Frame relay and ATM are common in Telecom Networks
- □ Local Area Networks (LAN) 0-2 km, Single Ownership Metropolitan Area Networks (MAN) 2-50 km, Wide Area Networks (WAN) 50+ km
 - □ Originally LAN/MAN/WAN technologies were different
 - □ Now they are all same
- □ Telecom Networks:
 - □ Access: Between subscriber and the service provider
 - □ Metro: Covering a city
 - □ Core: Between cities

Washington University in St. Louis

CSE473S


Homework 1A

- Which networking media will you use for the following applications and why?
- 1. Very large file transfer at home
- 2. High-speed multiple channel video transmission at office
- 3. News reading while traveling in a car

Washington University in St. Louis

CSE473S

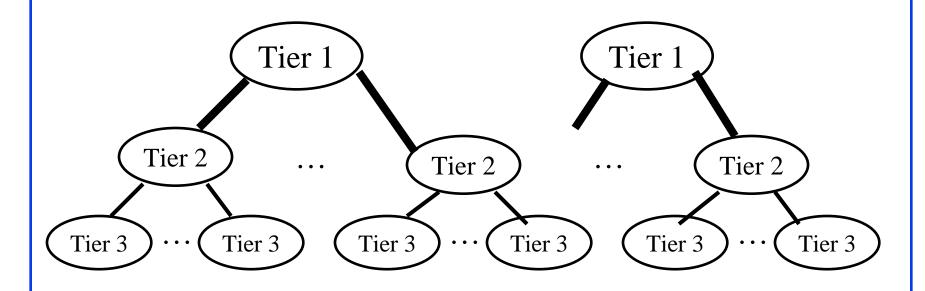
What is Internet?

- □ Internet = Network connecting networks
- □ Approximately 600 million hosts on Internet in July 2008.
- □ ISP: Internet Service Provider.
 - □ Provide access to Internet.
 - □ Telecommunications (Telephone) Companies, AT&T, Verizon, Comcast, ...
 - □ Coffee Shops (Wi-Fi)

Washington University in St. Louis

CSE473S

Structure of the Internet



- Enterprise/Home Networks: Stub Networks.
 Privately owned ⇒ Not owned by ISP.
- □ Access Network: Enterprise to ISP
- □ Core Network: ISP's network

Washington University in St. Louis

CSE473S

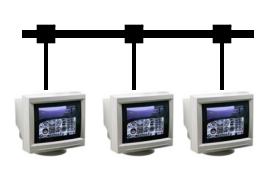
Types of ISPs

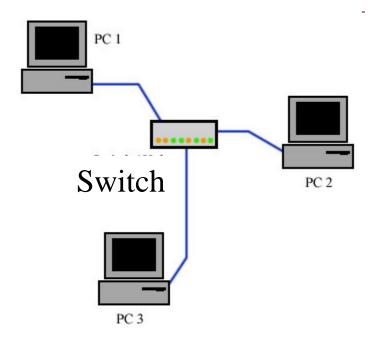
- □ Tier 1: Global or National, e.g., AT&T, Verizon, ...
- ☐ Tier 2: Regional
- ☐ Tier 3: Local

Washington University in St. Louis

CSE473S

Network Edge: Enterprise Networks


- 1. Ethernet
- 2. Wi-Fi


Washington University in St. Louis

CSE473S

Ethernet

- □ Uses UTP (Unshielded Twisted Pair)
- □ 10 Mbps, 100 Mbps, 1 Gbps, 10 Gbps
- Originally bus, now point-to-point (Star) topology

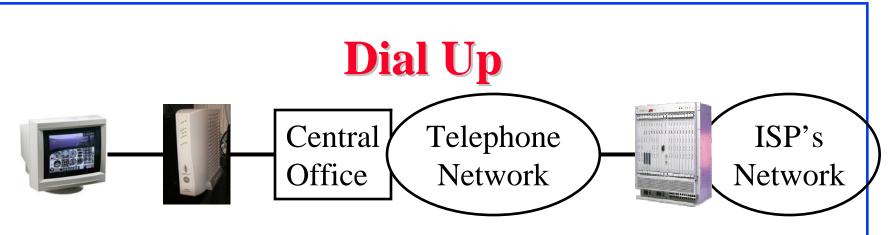
Washington University in St. Louis

CSE473S

Wi-Fi

- □ IEEE 802.11
- □ Uses 2.4 GHz and 5.8 GHz

Washington University in St. Louis


CSE473S

Access Networks

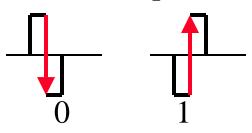
- 1. Dial Up
- 2. DSL
- 3. Cable
- 4. Fiber-To-The-Home
- 5. Wi-Fi
- 6. WiMAX

Washington University in St. Louis

CSE473S

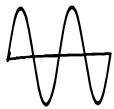
Home PC Modem

Modems


- Modem (Modulator/Demodulator) convert electrical bits to sound waveforms for transmission over telephone network
- □ Telephone network designed to carry 4 kHz voice
- □ Up to 56 kbps
- □ Does not need much help from the phone company

Washington University in St. Louis

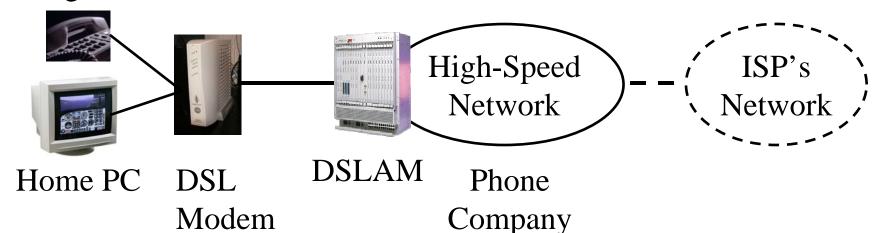
CSE473S


Bits, Hertz, and Baud

- □ Bits: Unit of information. Binary 0 or 1
- □ Bits are transmitted as pulses: E.g., Manchester encoding

0=High-to-low transition

1=Low-to-high transition


- Receiver design depends on the duration of smallest pulse 1kbps ⇒ One bit per millisecond ⇒ Each pulse is ½ ms ⇒ 2 kBaud
- □ The pulses become a mixture of sine waves on the medium
- \square Wires allow only certain frequencies \Rightarrow Hertz = cycles/second

Washington University in St. Louis

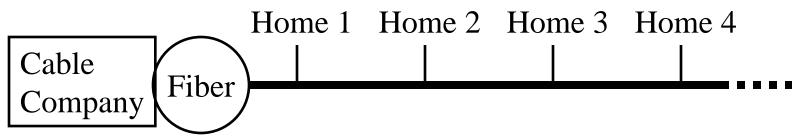
CSE473S

DSL

- Digital Subscriber Line (DSL)
- Can transmit very high data rates on phone wire using special equipment at the phone company allowing higher frequency signals

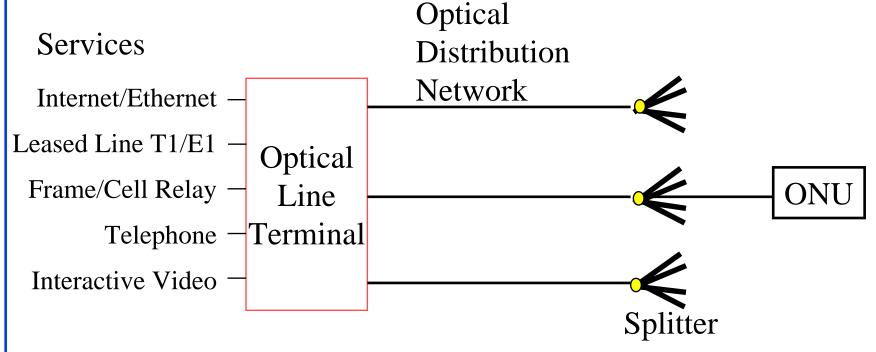
- DSL Access Multiplexer (DSLAM)
- □ 100 kbps 100 Mbps

Washington University in St. Louis


CSE473S

Cable

- □ Cable companies have a very-high speed medium (for video transmission)
- □ Phone wire = 4kHz for voice
 Video Cable = 500 MHz for video
 One TV Channel = 6 MHz
- □ 30 Mbps down/1
- □ Fiber in the main line + Coax in tributaries⇒ Hybrid Fiber Coax (HFC)


Cable Modem

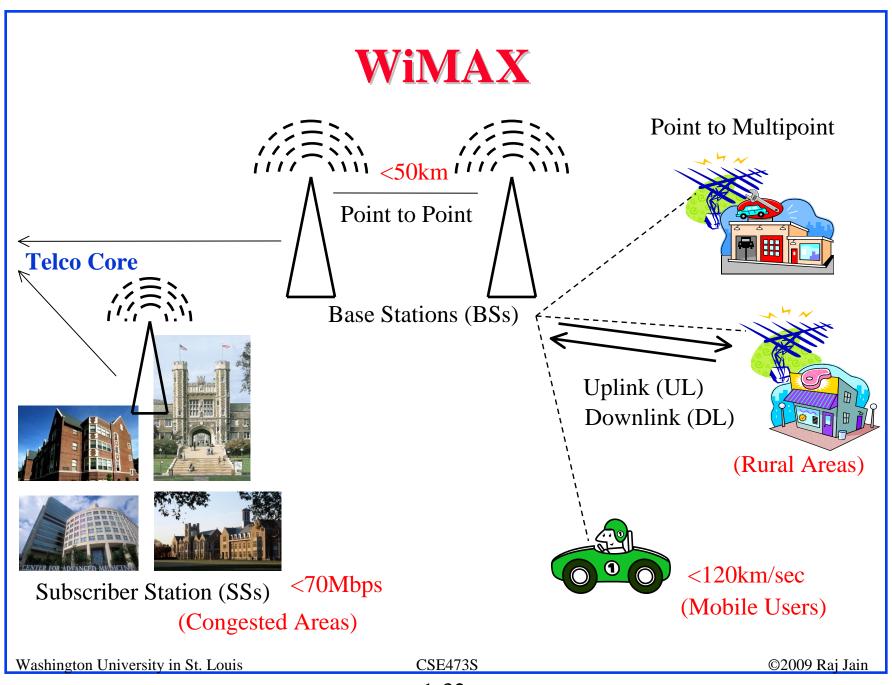
Washington University in St. Louis

CSE473S

Fiber-To-The-Home (FTTH)

- □ 100+ Mbps per home. Multiple services.
- No electronic components in the distribution system
 ⇒ Passive ⇒ Reliable
- Passive Optical Network (PON)

Washington University in St. Louis


CSE473S

Wireless Access Networks

- Wi-Fi hot spots
- Cellular access
- □ WiMAX

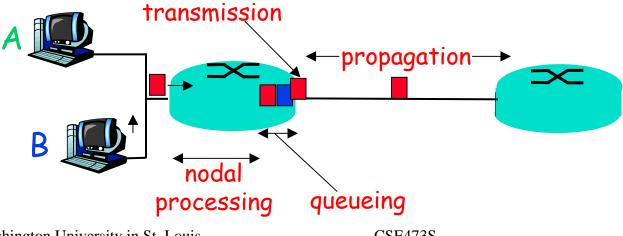
Washington University in St. Louis

CSE473S

Network Performance Measures

- Delay
- □ Throughput
- Loss Rate

Washington University in St. Louis


CSE473S

Delay Example (CBR Circuits)

- How long would it take to send a file of 640,000 bits from host A to host B over a circuit-switched network?
 - □ All links are 1.536 Mbps
 - □ Each link is shared by 24 users
 - □ 500 ms to establish end-to-end circuit
- □ Per User Rate = 1536/24 = 64 kbps
- \Box Time to transfer = 640 kb/64 kb = 10 s
- \Box Total time = .5 s + 10 s = 10.5 s

Packet Switching Delay

- Processing Delay: Check packets, decide where to send, etc.
- Queuing Delay: Wait behind other packets
- 3. Transmission Delay: First-bit out to last-bit out on the wire = Packet Length/bit rate
- Propagation Delay: Time for a bit to travel from in to out = Distance/speed of signal Light speed = $3x10^8$ m/s in vacuum, $2x10^8$ m/s in fiber

Washington University in St. Louis

CSE473S

Packet Switching Delay: Example

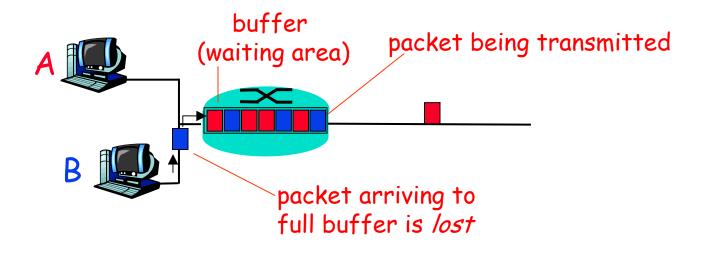
- □ 1500 Byte packets on 10 Mbps Ethernet, 1km segment
- **Transmission** Delay = $1500x8/10x10^8 = 1200 \mu s = 1.2ms$
- □ Propagation delay = $1000 \text{ m/}2x10^8 = 5 \mu\text{s}$

Washington University in St. Louis

CSE473S

Throughput

- Measured in Bits/Sec
- Capacity: Nominal Throughput
- □ Throughput: Realistic
- Bottleneck determines the end-to-end throughput


Net end-to-end capacity = 10 Mbps Actual throughput will be less due to sharing and overhead.

Washington University in St. Louis

CSE473S

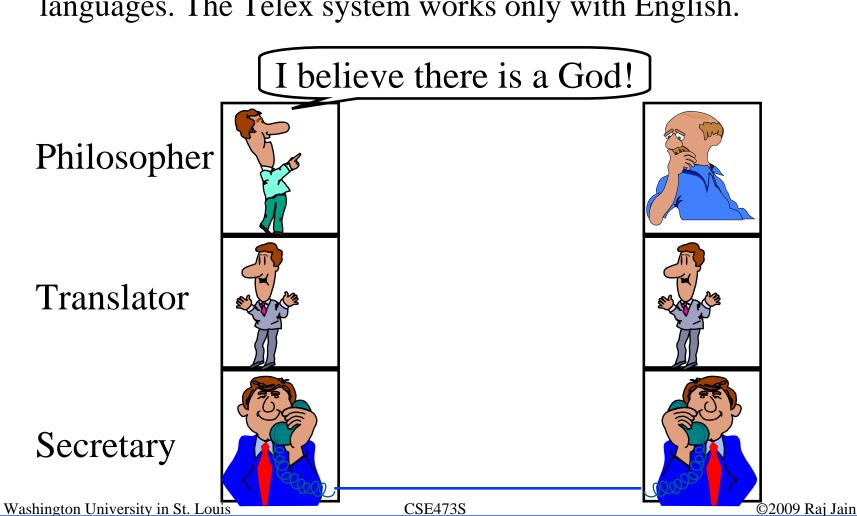
Loss Rate

- □ Queuing ⇒ Buffer overflow
- □ Bit Error Rate on the link
- Lost packets are retransmitted by the previous node or the source

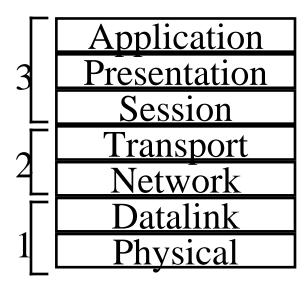
Washington University in St. Louis

CSE473S

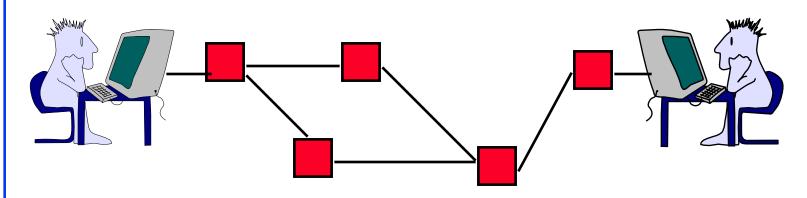
Homework 1B


- P5: Consider two hosts, A and B, connected by a single link of rate R bps. Suppose that the two hosts are separated by *m* meters, and suppose the propagation speed along the link is *s* meters/sec. Host A is to send a packet of size *L* bits to Host B.
- A. Express the propagation delay, d_{prop} in terms of m and s
- B. Determine the transmission time of the packet d_{trans} in terms of L and R.
- C. Ignoring processing queuing delays, obtain an expression for the end-to-end delay
- D. Suppose Host A begins to transmit the packet at time t=0. At time $t=d_{trans}$ where is the last bit of the packet?
- E. Suppose d_{prop} is greater than d_{trans} . At time $t=d_{trans}$, where is the first bit of the packet?
- F. Suppose d_{prop} is less than d_{trans} , at time t- d_{trans} , where is the first bit of the packet
- G. Suppose $s=2.5\times10^8$, L=120 bits, and R=56 kbps,. Find the distance m so that d_{prop} equals d_{trans} .

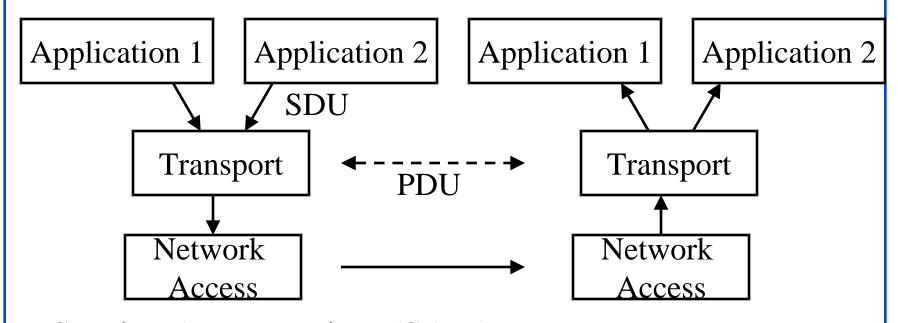
Washington University in St. Louis


CSE473S

Protocol Layers


□ Problem: Philosophers in different countries speak different languages. The Telex system works only with English.

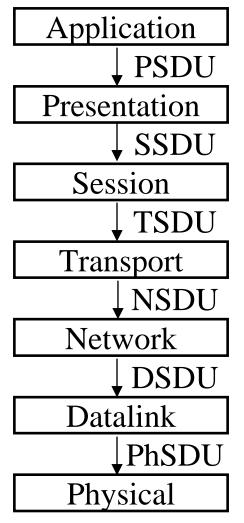
ISO/OSI Reference Model


File transfer, Email, Remote Login ASCII Text, Sound Establish/manage connection End-to-end communication: TCP Routing, Addressing: IP Two party communication: Ethernet How to transmit signal: Coding

Washington University in St. Louis

CSE473S

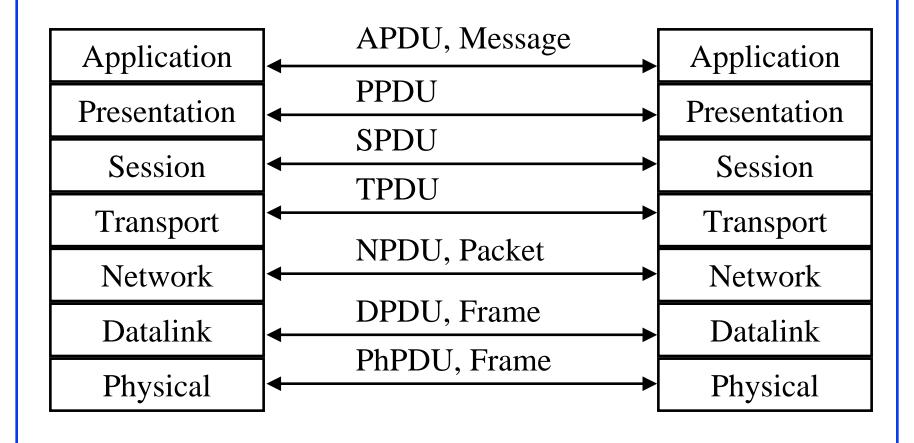
Service and Protocol Data Units



- Service Access Points (SAPs)
- Service Data Units (SDUs)
- Protocol Data Units (PDUs)

Washington University in St. Louis

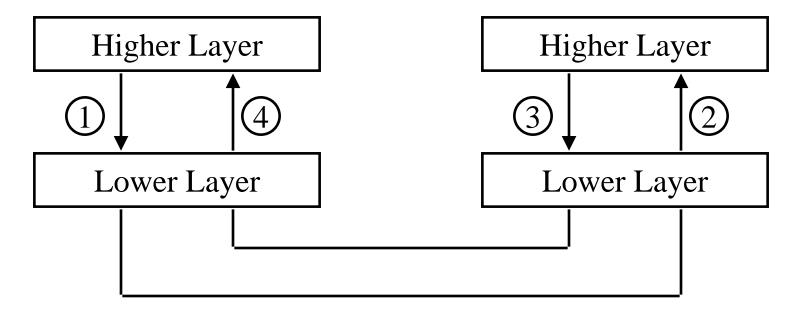
CSE473S


Service Data Unit (SDU)

Washington University in St. Louis

CSE473S

Protocol Data Unit (PDU)



Washington University in St. Louis

CSE473S

Service Primitives

□ Indication = Interrupt

1. Request

3. Response

2. Indication

4. Confirm

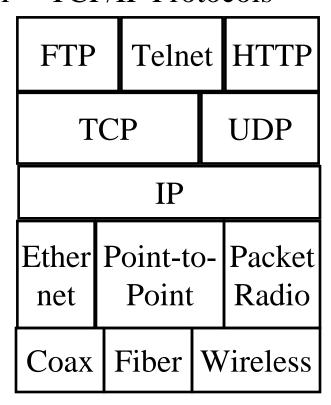
Unconfirmed service: No confirmation or response

Washington University in St. Louis

CSE473S

TCP/IP Reference Model

- □ TCP = Transport Control Protocol
- □ IP = Internet Protocol (Routing)
 TCP/IP Ref Model TCP/IP Protocols


Application

Transport

Internetwork

Host to Network

Physical

Washington University in St. Louis

CSE473S

OSI vs TCP/IP

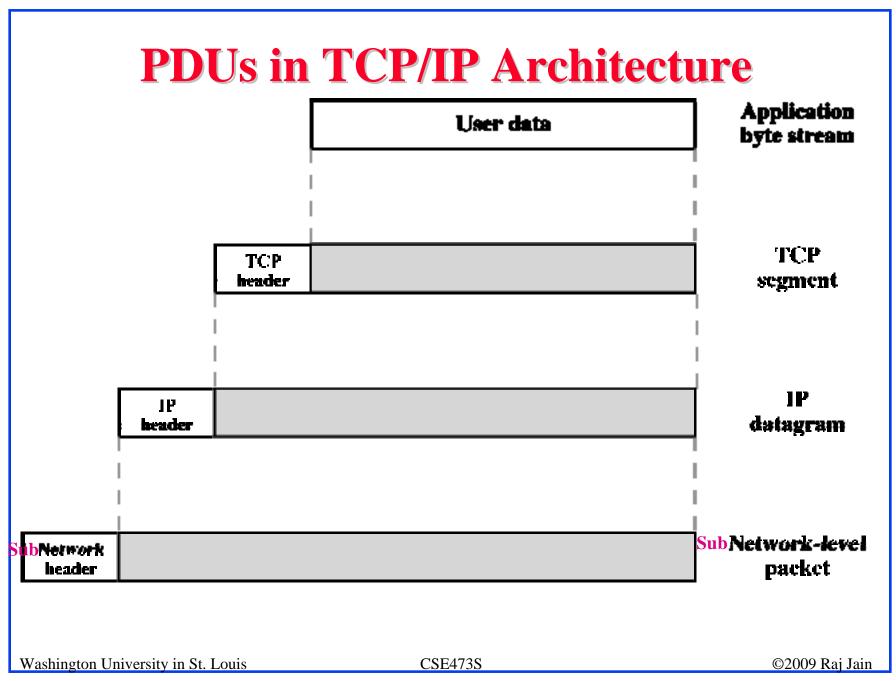
OSI TO

TCP/IP

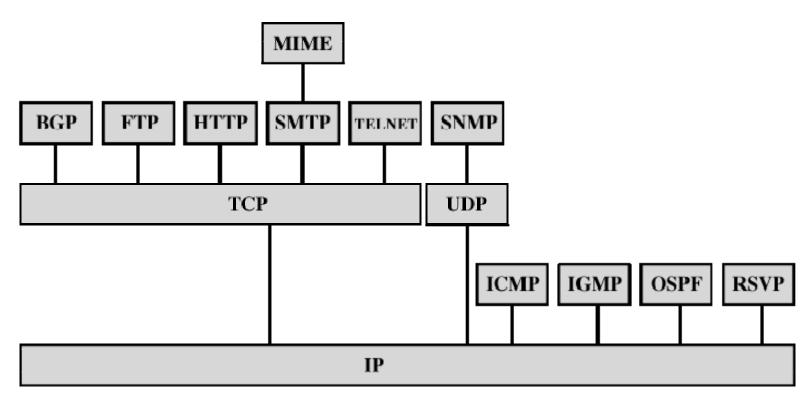
Application	
Presentation	Application
Session	
Transport	Transport (host-to-host)
Network	Internet
Data Link	Network Access
Physical	Physical

Washington University in St. Louis

CSE473S


OSI vs TCP Reference Models

- □ OSI introduced concept of services, interface, protocols. These were force-fitted to TCP later
 ⇒ It is not easy to replace protocols in TCP.
- □ In OSI, reference model was done before protocols. In TCP, protocols were done before the model
- □ OSI: Standardize first, build later TCP: Build first, standardize later
- □ OSI took too long to standardize.


 TCP/IP was already in wide use by the time.
- □ OSI became too complex.
- □ TCP/IP is not general. Ad hoc.

Washington University in St. Louis

CSE473S

TCP/IP Applications

BGP = Border Gateway Protocol OSPF = Open Shortest Path First
FTP = File Transfer Protocol RSVP = Resource ReSerVation Protocol
HTTP = Hypertext Transfer Protocol SMTP = Simple Viol (Transfer Protocol

ICMP = Internet Control Memoge Protocol SNMP = Simple Network Management Protocol

IGMP = Internet Group Management Protocol TCP = Transmission Control Protocol
IP = Internet Protocol IDF = User Datagram Protocol

MIME = Multi-Perpose Internet Mell Extension

Washington University in St. Louis

CSE473S

Network Security

- Security Components
- Types of Malware
- Types of Attacks
- Buffer Overflows
- Distributed DoS Attacks

Washington University in St. Louis

CSE473S

Security Components

- □ Confidentiality: Need access control, Cryptography, Existence of data
- Integrity: No change, content, source, prevention mechanisms, detection mechanisms
- □ Availability: Denial of service attacks,
- □ Confidentiality, Integrity and Availability (CIA)

Washington University in St. Louis

CSE473S

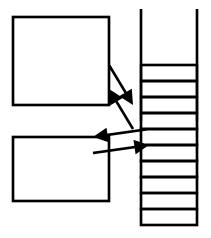
Types of Malware

- Viruses: Code that attaches itself to programs, disks, or memory to propagate itself.
- Worms: Installs copies of itself on other machines on a network, e.g., by finding user names and passwords
- □ **Trojan horses**: Pretend to be a utility. Convince users to install on PC.
- **□ Spyware**: Collect personal information
- □ Hoax: Use emotion to propagate, e.g., child's last wish.
- □ Trap Door: Undocumented entry point for debugging purposes
- Logic Bomb: Instructions that trigger on some event in the future
- **Zombie**: Malicious instructions that can be triggered remotely. The attacks seem to come from other victims.

Washington University in St. Louis

CSE473S

Types of Attacks

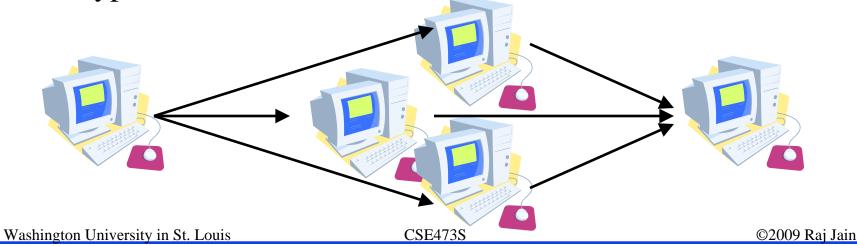

- **Denial of Service (DoS):** Flooding with traffic/requests
- **Buffer Overflows**: Error in system programs. Allows hacker to insert his code in to a program.
- **□** Malware
- □ Brute Force: Try all passwords.
- **□** Port Scanning:
 - ⇒ Disable unnecessary services and close ports
- □ Network Mapping

Washington University in St. Louis

CSE473S

Buffer Overflows

- □ Return address are saved on the top of stack.
- □ Parameters are then saved on the stack.
- □ Writing data on stack causes stack overflow.
- □ Return the program control to a code segment written by the hacker.

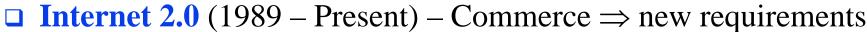


Washington University in St. Louis

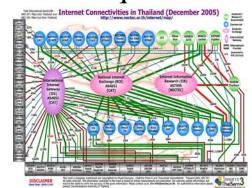
CSE473S

Distributed DoS Attacks

- □ **Tribe Flood Network** (TFN) clients are installed on compromised hosts.
- All clients start a simultaneous DoS attack on a victim on a trigger from the attacker.
- □ **Trinoo** attack works similarly. Use UDP packets. Trinoo client report to Trinoo master when the system comes up.
- **Stacheldraht** uses handlers on compromised hosts to receive encrypted commands from the attacker.


History of Internet

- □ 1961: Kleinrock developed queueing theory showed effectiveness of packet-switching
- □ 1964: Baran's report on packet-switching in military nets
- □ 1967: ARPAnet conceived by Advanced Research Projects Agency
- 1969: First ARPAnet node operational First Request for Comment (RFC)


CSE473S

Internet Generations

- □ **Internet 1.0** (1969 1989) Research project
 - □ RFC1 is dated April 1969.
 - □ ARPA project started a few years earlier
 - □ IP, TCP, UDP
 - □ Mostly researchers
 - □ Industry was busy with proprietary protocols: SNA, DECnet, AppleTalk, XNS

- □ Security RFC1108 in 1989
- □ NSFnet became commercial
- □ Inter-domain routing: OSPF, BGP,
- □ IP Multicasting
- □ Address Shortage IPv6
- □ Congestion Control, Quality of Service,...

HOST

IMP

UCHA

History of Internet (Cont)

- □ Early 1990s: HTML, HTTP: Berners-Lee
- □ 1994: Mosaic, later Netscape
- **2007**:
 - □ ~500 million hosts
 - □ Voice, Video over IP
 - □ P2P applications: BitTorrent (file sharing) Skype (VoIP), PPLive (video)
 - □ Video applications: YouTube, gaming
 - □ Wireless, Mobility

Washington University in St. Louis

CSE473S

Key Concepts

- □ Internet Protocol (IP): Protocol
- Address: All systems have an IP address, for example, 125.36.47.23
- □ Name: All systems have a human readable name, e.g., scorpio.cec.wustl.edu, ibm.com.
- □ Technically called DNS (domain name systems) name. Details will be introduced later.
- □ IETF: Internet Engineering Task Force. Make standards for Internet. IETF.org
- □ RFC: Request for comments. Documents that describe Internet protocols.

Washington University in St. Louis

CSE473S

Homework 1C

- 1. Find the IP address of your computer
- 2. Find the IP address of www.google.com
- 3. Measure delay from your computer to www.google.com

For all cases show the command used and the output.

Washington University in St. Louis

CSE473S

Summary

- 1. Most common medium is UTP, wireless, fiber
- 2. Internet is a network of networks
- 3. Enterprise, access, and core networks
- 4. Performance Measures: Delay, Throughput, Loss Rate
- 5. Protocol Layers: ISO and TCP/IP reference models

Washington University in St. Louis

CSE473S