
1

PHYSICAL

APPLICATION

DATALINK

APPLICATION

DATALINK

PHYSICALLINK

CSE 473S Lab Assignment 1
Due date: TBA

1. Goals

• To learn the basic infrastructure of layered architecture and service primitives in
computer networks.

• To design a simplified datalink layer.
• To get familiar with the simulator environment used for this and the next lab.

2. Layered architecture

For the purpose of this lab, assume that each node in the network has three layers:
physical layer, datalink layer (DLC) and application layer. Nodes in the network are
connected to one another via links. Each layer in a node can be thought of as an abstract
entity that performs certain functions. Similarly, links are also entities that have some
functionality. Figure 1 outlines the three layers in a node connected by a link entity. In
this lab, you will learn how these entities communicate with one another, and will
develop a simple DLC layer entity.

Figure 1: Layered Architecture

3. Protocol Data Units

Each layer communicates through Protocol Data Units (PDU). The application layer PDU
is called A_PDU, the DLC PDU is called D_PDU, and the physical layer PDU is called
PH_PDU. The A_PDU, D_PDU and PH_PDU formats are defined below. These
definitions, together with some others are provided to you in the file pdu.h.

2

typedef struct {
 int snode; /* source node address */
 int dnode; /* destination node address */
 char data[DATASIZE]; /* data */
} A_PDU_TYPE;

typedef struct {
 int curr_node; /* address of this node */
 int next_node; /* address of next node */
 A_PDU_TYPE a_pdu; /* application pdu */
 enum boolean error;
} D_PDU_TYPE;

typedef struct {
 int type;
 D_PDU_TYPE d_pdu; /* dlc pdu */
} PH_PDU_TYPE;

typedef struct {
 union { /* structure containing a_pdu */
 A_PDU_TYPE a_pdu; /* d_pdu or ph_pdu as a union */
 D_PDU_TYPE d_pdu;
 PH_PDU_TYPE ph_pdu;
 } u;
 int type; /* One of: TYPE_IS_A_PDU, TYPE_IS_D_PDU, TYPE_IS_PH_PDU */
} PDU_TYPE;

The application layer sends an a_pdu to the DLC layer. The DLC layer receives this
a_pdu and encapsulates it within a d_pdu. It then performs its functions on the d_pdu
and sends the d_pdu to the physical layer. In the same manner, the physical layer
receives the d_pdu, encapsulates it within a ph_pdu and sends it to the link entity. The
link entity receives a ph_pdu from one physical layer and delivers it to the physical layer
at the other end. When a physical layer receives a ph_pdu from the link, it extracts the
d_pdu from it and sends it to the dlc layer. The dlc layer checks the d_pdu for errors,
extracts the a_pdu and sends it to the application layer.

4. Service Primitives

Inter layer communication takes place by means of service primitives. At the physical-
datalink layer interface, there are two service primitives: PH_DATA_request and
PH_DATA_indication. At the datalink-application layer interface, there are two service
primitives: DLC_DATA_request and DLC_DATA_indication.
 A service primitive, for example, DLC_DATA_request, is implemented as two
procedures: ApplicationToDatalink() and DatalinkFromApplication().
ApplicationToDatalink() puts a_pdu's into the dlc entity, while
DatalinkFromApplication() gets a_pdu's from the dlc entity. Notice that
ApplicationToDatalink() is called by the application layer to send a_pdu's, and
DatalinkFromApplication() is called by the datalink layer to receive these
a_pdu's.

3

5. Methodology

In this lab, you will design the DatalinkToPhysical and DatalinkToApplication
functions for the datalink layer. The outline of these functions is given in the Appendix,
and provided in the file dlc layer.c

1) In the file at http://www.cse.wustl.edu/~cse473s/labs/lab1.zip you will find the
following.

• sim.src/pdu.h: Header file containing some declarations and definitions.

You don't need to include this file anywhere in your source code because it is
already included in dlc layer.h. You will need to use some of the function
definitions provided in this file, like pdu_alloc()and pdu_free()

• components.src/dlc layer.c: File containing the outline for the lab.
• lab1.vcproj: Visual Studio project file for the lab.
• test/3nodes_basic.config: This file specifies the configuration of the

network. In this lab you will only use a 3 node configuration with point-to-point
links. This is a basic configuration with 3 point-to-point nodes. App1 sends to
App2; App2 sends to App3; App3 sends to App1. The configuration is shown
in figure 2 (next page).

• test/lab1.exe: A sample executable file to familiarize you with the
graphical user interface.

2) Unzip the lab1.zip file into your user directory at CEC. Once unzipped you

should have the following folder structure. H:/cse473s/lab1. (You can deviate
from this path but you may have to change settings in the project file to do so)

3) You need to set an environmental variable for execution. Follow these instructions

closely.
• Go to Start/Settings/Control Panel/System.
• Go to the Advanced tab
• Click on Environment Variables
• Under User Variables, click New.
• Enter the following;

o Variable Name: CISE_LIBRARY_LAB1
o Variable Value: H:\cse473s\lab1\sim.src

• Click OK for all open dialogs.
4) Experiment with lab1.exe. Refer to section 6 for instructions on how to run your

program.

5) Study the source code carefully. (Don't worry about the configuration files).

4

link3

phy1

dlc1

app1

phy2

dlc2

app2

app3

dlc3

phy3

link1

link2

Figure 2: Three node configuration

6) Now you are ready to write your program for the datalink layer. All you have to do
in this lab is fill in the appropriate code for DatalinkToPhysical() and
DatalinkToApplication() in dlc_layer.c.

7) To start, open lab1.vcproj file (Opens using Visual Studio .NET). To build the

project, use the Build/Build menu option. To execute your program, use the
Debug/Start menu option.

5

8) Execute your version of the code and use the configuration file to make sure it
works.

9) You can use any of the Windows PCs in CEC or the Oasis terminal server to work

on this project. If you are unfamiliar with Oasis, please get help from the CEC help
desk. (or post to the news group: wu.cse.class.cse473)

6. Running your program: The Graphical User Interface

When you execute the lab1.exe file (in the test directory) or use the Debug/Start menu
option from Visual Studio .NET you will see a window with the simulator interface.

Figure 3: The simulator environment

Figure 3 shows the simulator window with the 3-nodes configuration. Each node has 3
layers denoted by three squares. Each link component is denoted by a square between the
link connections. In addition to the simulator window, there are 5 smaller windows
visible in the figure. Two of the windows are the space time diagrams for the data going
between the links (the third space-time window is not visible in the figure but you will
see it on the simulator). The other three windows are called the node graphs for the

6

simulation. They allow you to send text data and/or a preloaded graphical image file over
the network. The node-graph windows have the following functions:

Function Name Description
Send msg
Send graph
Clear msg
Clear graph
Load graph

Send a message in the text window
Send the graph in the graph window
Clear the text window
Clear the graph window
Load a pre-defined graph in the graph window

The top of the main simulator window has a menu bar that has the following selections.

Menu Sub Menu Description
File

Load
Exit

Load configuration file (Include full path)
Stop the program and exit

Edit

Raise Raise the node graphs and space-time diagrams to the front of
main window. Useful when you cannot see the graphs.

Run

Run

Single Step
Pause
Resume
Delay
Inc/Dec Debug Level

Stop Time

Start the simulator. You need to send msg/graph to see
further animation.
Enters single step mode. Use the space bar for a step.
Pause the simulation.
Resume the simulation.
Set delay between events. The default is 50. 5 is pretty fast.
Increament/Decrement Debug Level, which is used in
dprintf().
The simulation time to stop.

Help About
How to use

About the CISE Project.
Help text.

The bottom of the main simulator window is the status bar with the following
information.

Field Description
Filename
Stop Time
Delay
DebugLevel
Simulation time

The configuration file name.
The end time for the simulation
Delay between events.
Debug level used in dprintf().
The clock in the simulator.

• First, load the configuration file. This can be done by using the File/Load menu

option and typing H:\cse473s\lab1\test\ 3nodes_basic.config in the input dialog that
comes up.

• To send one or more messages, type in the messages in the text window. Press Send
Msg button.

• To send a graph, press Load Graph first and then press Send Graph.
• Change the delay to make it run faster/slower. Use Run/Single step menu option and

the space bar to see it step by step.

7

• Change Debug Level (from 0 3) and use dprintf(int debug level,
“format”, variables) in your program to print out debug information.

7. Submissions

You must submit the following in a zip file by email to cse473s@cse.wustl.edu. The
subject line of your email should contain “lab1_lastname_firstname. Please also name the
zip file as lab1_lastname_firstname.zip (e.g. lab1_pallemulle_sajeeva.zip)

The zip file should contain:
• Your source code for dlc_layer.c.
• A Readme file that specifies the following,

o Whether your code works as expected
o If the project is incomplete, then what problems you ran into.

8. Miscellaneous

• For questions,

o Come to office hours: The TA office hours may be found at
http://www.cse.wustl.edu/~csgrader or in WUGrade.

o Post to the news group: wu.cse.class.473

9. Appendix

/* skeleton dlc_layer.c for lab1 */

#include "cisePort.h"
#include "sim.h"
#include "component.h"
#include "comptypes.h"
#include "list.h"
#include "eventdefs.h"
#include "main.h"
#include "route_activity.h"
#include "sim_tk.h"
#include "dlc_layer.h"

/**/
/* ----- DO NOT REMOVE OR MODIFY THIS FUNCTION ---- */
static
dlc_layer_receive(DLC_LAYER_ENTITY_TYPE *dlc_layer_entity,
 GENERIC_LAYER_ENTITY_TYPE *generic_layer_entity,
 PDU_TYPE *pdu)
{
 if (DatalinkFromApplication(generic_layer_entity)) {

 DatalinkToPhysical(dlc_layer_entity, pdu);

8

 } else if (DatalinkFromPhysical(generic_layer_entity)) {

 DatalinkToApplication(dlc_layer_entity, pdu);

 }
 return 0;
}

/**/

DatalinkToPhysical(DLC_LAYER_ENTITY_TYPE *dlc_layer_entity,
 PDU_TYPE *pdu_from_application)
{
 PDU_TYPE *pdu_to_physical; /* use pdu_alloc() to create this */

 /* just a sanity check */
 if (pdu_from_application->type != TYPE_IS_A_PDU) panic("Empty
a_pdu\n");

 /* ------ DO YOUR CODING HERE ----- */
 /* create d_pdu: use pdu_alloc() */
 /* use bcopy to copy the contents */

 /* send to phy */
 /* Use the macro:
 send_pdu_to_physical_layer(dlc_layer_entity,pdu_to_physical);
 */

 pdu_free(pdu_from_application);
 return 0;
}

/* -- */
DatalinkToApplication(DLC_LAYER_ENTITY_TYPE *dlc_layer_entity,
 PDU_TYPE *pdu_from_physical)
{
 PDU_TYPE * pdu_to_application;

 /* just a sanity check */
 if (pdu_from_physical->type != TYPE_IS_D_PDU) panic("Empty
d_pdu\n");

 /* ------ DO YOUR CODING HERE ----- */
 /* Use the macro:

send_pdu_to_application_layer(dlc_layer_entity,pdu_to_application);
 */

 /* extract a_pdu, check for error, and send to application if
error-free */

 pdu_free(pdu_from_physical);
 return 0;
}

