Routing in Switched Networks

Raj Jain Washington University Saint Louis, MO 63131 Jain@cse.wustl.edu

These slides are available on-line at:

http://www.cse.wustl.edu/~jain/cse473-05/

Washington University in St. Louis	CSE473s	

©2005 Rai Jain

Routing Techniques Elements

- Performance criterion: Hops, Distance, Speed, Delay, Cost
- **Decision time**: *Packet*, session
- **Decision place**: *Distributed*, centralized, Source
- Network information source: None, local, *adjacent* nodes, nodes along route, all nodes
- **Routing strategy**: Fixed, *adaptive*, random, flooding
- Adaptive routing update time: Continuous, *periodic*, *topology change*, major load change

Random Routing

- Node selects one outgoing path for retransmission of incoming packet
- □ Selection can be random or round robin
- □ No network info needed
- □ Route is typically not least cost nor minimum hop

Fixed Routing Tables

From Node

To Node

1	_	1	2	2	+	
2	2	_	5	2	4	
3	4	3		5	3	
4	4	4	5	_	4	
5	4	4	5	5	_	
6	4	4	5	5	6	-

4	4	4	5	_
5	4	4	5	5
6	4	4	5	5

Node 1 Destination Next Node

Node 3

Destination Next Node

1	5
2	5
4	5
5	5
6	5

Node 4 Destination Next Node

Destination Next Node

Node 6

Destination Next Node

1	5
2	5
3	5
4	5
5	5

1	2
2	2
3	5
5	5
6	5

©2005 Raj Jain

CSE473s

Washington University in St. Louis

Flooding

- □ Packet sent by node to every neighbor
- Incoming packets retransmitted on every link except incoming link
- Each packet is uniquely numbered so duplicates can be discarded

Adaptive: Distance Vector vs Link State

- Distance Vector: Each router sends a vector of distances to its neighbors. The vector contains distances to all nodes in the network.
 Older method. Count to infinity problem.
- Link State: Each router sends a vector of distances to all nodes. The vector contains only distances to neighbors. Newer method. Used currently in internet.

Dijkstra's Algorithm

- Goal: Find the least cost paths from a given node to all other nodes in the network
- □ Notation:

w(i,j) = Link cost from i to j if i and j are connected

L(n) = Total path cost from s to n

T = Set of nodes so far for which the least cost path is known

□ Method:

□ Initialize: T={s}, L(n) = w(s,n) for $n \neq s$

□ Find node $x \notin T$, whose L(x) is minimum

□ Update L(n) = min[L(n), L(x) + w(x,n)] for all $n \notin T$

Dijkstra Example (3)

	Т	L(2)	Path	L(3)	Path	L(4)	Path	L(5)	Path	L(6)	Path
1	{1}	2	1-2	5	1-3	1	1-4	∞	-	∞	_
2	{1,4}	2	1-2	4	1-4-3	1	1-4	2	1-4-5	∞	-
3	{1,2,4}	2	1-2	4	1-4-3	1	1-4	2	1-4-5	∞	-
4	{1,2,4,5}	2	1-2	3	1-4-5-3	1	1-4	2	1-4-5	4	1-4-5-6
5	{1,2,3,4,5}	2	1-2	3	1-4-5-3	1	1-4	2	1-4-5	4	1-4-5-6
6	{1,2,3,4,5,6]	}2	1-2	3	1-4-5-3	1	1-4	2	1-4-5	4	1-4-5-6
		P									

Bellman-Ford Algorithm

□ Notation: s = Source nodew(i,j) = link cost from i to jh = Number of hops being considered $L_{h}(n) = \text{Cost of h-hop path from s to } n \text{ with } \leq h \text{ hops}$ □ Method: Find all nodes 1 hop away Find all nodes 2 hops away Find all nodes 3 hops away □ Initialize: $L_0(n) = \infty$ for all $n \neq s$; $L_h(s) = 0$ for all h \Box Find jth node for which h+1 hops cost is minimum $L_{h+1}(n) = \min_{i} [L_{h}(j) + w(j,n)]$

Bellman-Ford Example (Cont)

h	D (h ₂)	Path	D (h ₃)	Path	D(h	4) Path	D(h ₅)Path	D (h ₆)	Path
0	∞	-	∞	-	∞	-	8	-	∞	-
1	2	1-2	5	1-3	1	1-4	∞	-	∞	-
2	2	1-2	4	1-4-3	1	1-4	2	1-4-5	10	1-3-6
3	2	1-2	3	1-4-5-3	1	1-4	2	1-4-5	4	1-4-5-6
4	2	1-2	3	1-4-5-3	1	1-4	2	1-4-5	4	1-4-5-6
	<u> </u>								<u> </u>	
Wasł	nington Univ	ersity in St.	Louis		CSE4	-73s				©2005 Raj Jain

ARPAnet Routing (1969-78)

- □ Features: Cost=Queue length,
- Each node sends a vector of costs (to all nodes) to neighbors. Distance vector
- Each node computes new cost vectors based on the new info using Bellman-Ford algorithm

ARPAnet Routing Algorithm

ARPAnet Routing (1979-86)

- Problem with earlier algorithm: Thrashing (packets went to areas of low queue length rather than the destination), Speed not considered
- □ Solution: Cost=Measured delay over 10 seconds
- Each node floods a vector of cost to neighbors. Link-state. Converges faster after topology changes.
- Each node computes new cost vectors based on the new info using Dijkstra's algorithm

©2005 Rai Jain

ARPAnet Routing (1987+)

□ Problem with 2nd Method: Correlation between delays reported and those experienced later : High in light loads, low during heavy loads \Rightarrow Oscillations under heavy loads \Rightarrow Unused capacity at some links, over-utilization of others, More variance in delay more frequent updates More overhead Washington University in St. Louis ©2005 Rai Jain 15 - 22

Routing Algorithm

Delay is averaged over 10 s □ Link utilization = $\rho = 2(T_s - T)/(T_s - 2T)$ where T=measured delay, T_s = service time per packet (600 bit times) Exponentially weighted average utilization $U(n+1) = \alpha U(n) + (1-\alpha)\rho(n+1)$ =0.5 U(n)+0.5 ρ (n+1) with α = 0.5 Theoretical Link cost = fn(U)queueing delay Delay (hops) Metric for satellite link Metric for terrestrial link

Washington University in St. Louis

15-23

CSE473s

0.0

0.1

0.2

0.3

0.4

0.5

Estimated utilization

0.6

0.7

0.8

0.9

1.0

©2005 Raj Jain

- Distance Vector and Link State
- □ Routing: Least-cost, Flooding, Random, Fixed
- Dijkstra's and Bellman-Ford algorithms
- □ ARPAnet

Reading Assignment

Read Chapter 12 of Stallings' 7th edition and try to answer all review questions.

Homework

Prepare the routing calculation table for node 1 in the following network using (a) Dijkstra's algorithm (b) Bellman Ford Algorithm

