

http://www.cse.wustl.edu/~jain/cse473-05/

Washington University in St. Louis

Sine Wave

- Peak Amplitude (A): Maximum strength of signal in volts
- □ **Frequency** (f): Hertz (Hz) or cycles per second
- $\Box Period = time for one repetition (T)$

$$\Gamma = 1/f$$

D Phase (ϕ): Relative position in time

Frequency Domain Concepts

- Fundamental Frequency: All other frequency components are multiple of fundamental frequency f
 Period = 1/f
- □ **Spectrum**: Range of frequencies
- □ Absolute Bandwidth: Width of the spectrum

Absolute Bandwidth = 3f-f = 2f

- Effective Bandwidth: Narrow band of frequencies containing most of the energy
- **DC Component**: Constant or zero frequency

$A+B \sin(2\pi ft+\theta)$

Signal with DC Component

(a) s(:) = 1 + $(4/\pi)$ [sin $(2\pi/t)$ + (1/3) sin $(2\pi(3/t))$]

Analog Data Example: Speech and Music

Analog Data Example 2: Television

Video Signal

- USA 483 lines scanned per frame at 30 frames per second
 525 lines but 42 lost during vertical retrace
- □ So 525 lines x 30 scans = 15750 lines per second
 - \Box 63.5µs per line

 \Box 11µs for retrace, so 52.5 µs per video line

- □ Max frequency if line alternates black and white
- Horizontal resolution is about 450 lines giving 225 cycles of wave in 52.5 μs
- □ Max frequency of 4.2MHz

Digital Transmission

- □ Repeaters are used to regenerate digital signal
- □ Signal attenuation is overcome
- □ Noise is not amplified
- Low cost LSI/VLSI technology
- Longer distances over lower quality lines
- Capacity utilization
 - □ High bandwidth links economical
 - High degree of multiplexing easier with digital techniques
- □ Security & Privacy: Encryption

Noise

- Additional signals inserted between transmitter and receiver
- □ Thermal Noise:
 - Due to thermal agitation of electrons
 - □ Uniformly distributed
 - □ White noise
- □ Intermodulation Noise:
 - □ Signals that are the sum and difference of original frequencies sharing a medium

Noise (Cont)

- Crosstalk Noise: A signal from one line is picked up by another
- □ Impulse Noise:

Irregular pulses or spikes
 e.g., External electromagnetic interference

- □ Short duration
- □ High amplitude

Shannon's Theorem

 \Box Bandwidth = B Hz Signal-to-noise ratio = S/N□ Maximum number of bits/sec = $B \log_2 (1+S/N)$ \Box Example: Phone wire bandwidth = 3100 Hz $S/N = 30 \, dB$ $10 \text{ Log }_{10} \text{ S/N} = 30$ Log_{10} S/N = 3 $S/N = 10^3 = 1000$ Capacity = $3100 \log_{2} (1+1000)$ = 30,894 bps

Thermal Noise

- □ Thermal Noise per Hertz = kT W/Hz
- □ $k = Boltzman's constant = 1.38 \times 10^{-23}$ Joules/Kelvin
- \Box T = Absolute Temperature (in Kelvins)
- **Example**: 10MHz receiver at 21°C

□ Thermal Noise per Hertz = $1.38 \times 10^{-23} \times (21 + 273.15)$

- □ Thermal Noise N = $1.38 \times 10^{-23} \times (294.15) \times 10 \times 10^{6}$
- □ Thermal Noise in dBW = $10 \log_{10} N$
 - $= 10\log_{10}(1.38 \times 10^{-23}) + 10\log_{10}(294.15) + 10\log_{10}(10^7)$
 - = -228.6 + 24.7 + 70 = -133.9 dBW

- Guided Media vs unguided media
- Analog vs digital signal
- □ 3 Important characteristics of sinusoidal signal
- □ Relationship between Wavelength and Frequency
- □ Attenuation vs delay distortion
- □ Key factors affecting channel capacity

Reading Assignment

Read Chapter 3 and Appendix 3A of Stallings 7th edition.

Homework □ Submit answer to exercises 3.15 (Teleprinter channel) and 3.16 (digital signaling system) of 7th edition by Stallings.