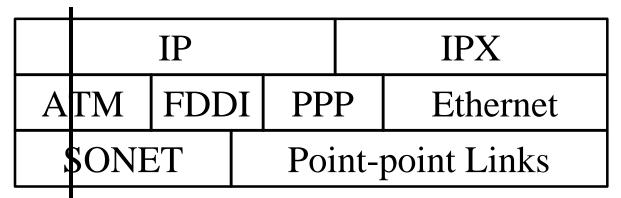

- □ IP over SONET: Trends, Why?
- □ SONET: Key features
- **SONET** vs ATM
- □ IP over SONET: Key Issues

What is SONET?

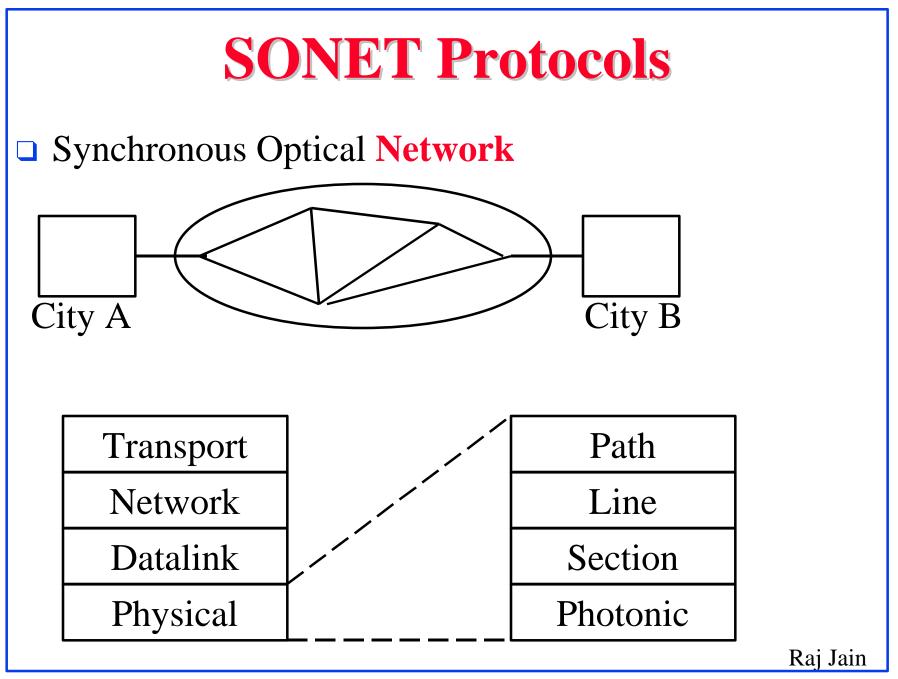
- □ Synchronous optical network
- Standard for digital optical transmission (bit pipe)
- Developed originally by Bellcore.
 Standardized by ANSI T1X1
 Standardized by CCITT

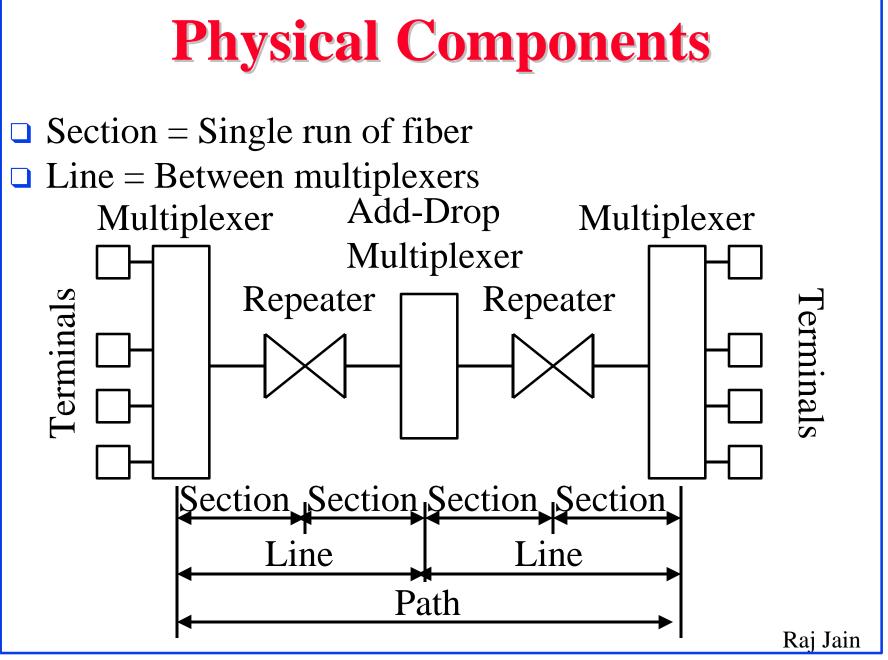

 \Rightarrow Synchronous Digital Hierarchy (SDH)

□ You can lease a SONET connection from carriers

Changing Trends

□ View Until Early 1996:




□ View in Late 1996:

IP				IPX		
ATM	FDDI	I	PP	Р	Ethernet	
SONET				Point-point Links		
			7			

Trends (Cont)

- Originally, ATM has been designed for high-speed transfer of data, voice, video
- □ Carriers were expected to move to ATM networks
- SONET was designed as a high-speed physical layer for transmission over fiber-optic links
- □ ATM was expected to run over carrier's SONET links
- "IP over SONET" allows IP datagram transfers over high-speed carrier links using PPP
- □ SONET is appearing as a competition to ATM

Signal Hierarchy

Synchronous Transport Signal Level $n = STS - n = n \times 51.84$ Mbps STM=Synchronous Transport Module, OC=Optical Carrier level

ANSI	Optical	CCITT	Data Rate	Payload Rate
Designation	Signal	Designation	(Mbps)	(Mbps)
STS-1	OC-1		51.84	50.112
STS-3	OC-3	STM-1	155.52	150.336
STS-9	OC-9	STM-3	466.56	451.008
STS-12	OC-12	STM-4	622.08	601.344
STS-18	OC-18	STM-6	933.12	902.016
STS-24	OC-24	STM-8	1244.16	1202.688
STS-36	OC-36	STM-12	1866.24	1804.032
STS-48	OC-48	STM-16	2488.32	2405.376
STS-96	OC-96	STM-32	4976.64	4810.176
STS-192	OC-192	STM-64	9953.28	9620.928

Automatic Protection Switching

- 100 µs or more is "loss of signal"
 2.3 µs or less is not "loss of signal"
 In-between is up to implementations
- □ Most implementations use 13-27 μ s ⇒ Higher speed lines ⇒ maintain sync for more bits
- □ APS allows switching circuits on fault
- □ May take up to 50 ms to complete
- □ Wastes entire links as standby.
- □ Protection by routers works faster than by SONET

IP/PPP/SONET vs IP/ATM/SONET

- 1. Overhead:
 - SONET claimed to provide 25-30% higher throughput than ATM.
 - IPOA encaptulation, AAL5 trailer, ATM cell headers eliminated in SONET
 - 155.52 Mbps Link ⇒ 149.76 ATM ⇒ 135.63 ATM payload
 - 9.5% more throughput (135.63 Mbps vs 149 Mbps)
 - = 9 T1 Lines out of 96
 - 6% for ABR flow control. Nothing for UBR/CBR/VBR.

• Signaling overhead for SVCs.

PPP/SONET vs ATM/SONET (Cont)

- 2. SONET Reliability through APS APS wastes entire links as standby. Long APS times can badly interact with routing
- 3. ATM provides multiservice integration
- 4. ATM provides traffic management (oversubscription)
- 5. SONET needs to be provisioned. ATM allows SVCs also.
- 6. ATM allows multiple secure VCs on the same physical interface.

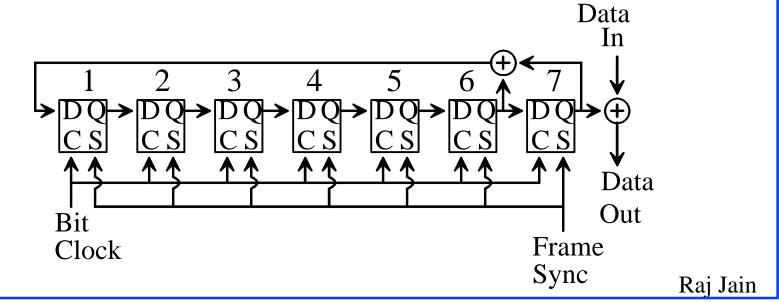
PPP/SONET vs ATM/SONET (Cont)

- 7. SONET managed by TL-1 protocol. Will migrate to CMIP. IP and ATM can be managed by SNMP. Can't configure SONET equipment/ bandwidth from IP platform.
- 8. PPP byte stuffing create unpredictable traffic \Rightarrow QoS difficult
- 9. No Priorities or preemption in IP/PPP/SONET
 ⇒ QoS not feasible currently
- 10. PPP is a single-destination protocol. You can reach only one destination using one link. ATM is a multidestination protocol.

PPP/SONET vs ATM/SONET (Cont)

SONET allows multiple destinations from one link using multiple OC-n frames but PPP cannot use this feature.

11. Multicast: No support in SONET. Handled in IP. Multicast over SONET being designed. Multiple Access Protocol Over SONET (MAPOS)


12. Delay: Every hop of SONET introduces a 125-µs delay regardless of speed ⇒ Cut through routing is difficult

13. SONET payload scrambling is an issue.

Scrambling: Introduction

- 1. Add random sequence
- 2. Divide by a number and send quotient. Similar to CRC.

Both implemented by shift-registers. Analyzed using polynomials. 1+x⁶+x⁷

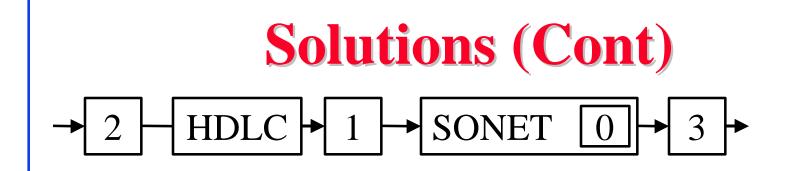
Scrambling (Cont)

- ❑ Set-Reset Synchronous scrambler: Add a fixed random bit pattern. Need to tell where to start adding ⇒ Need to synchronize.
- Self-synchronous scrambler: Divide by a fixed number. No need for synchronization. Errors multiply.
- □ Example: Send 12 using divider $3 \Rightarrow$ Send 4. Received $5 \Rightarrow 15$.

Scrambling

- □ SONET uses NRZ coding.
 - 1 = Light On, 0 = Light Off.
- □ Too many 1's or 0's \Rightarrow Loss of bit clocking information
- □ All bytes (except some overhead bytes) are scrambled
- □ Polynomial $1 + x^6 + x^7$ with a seed of 1111111 is used to generate a pseudo-random sequence, which is XOR'ed to incoming bits.

1111 1110-0000 0100-0001 ... 010


If user data is identical to (or complement of) the pseudo-random sequence, the result will be all 0's or 1's.

Payload Scrambling Issue

- 21 1500-byte datagrams will ensure 2080 bits of 0's/1's (13 µs at STS-3c) resulting in Loss of signal, framing, and Sync [T1X1.5/97-134, 97-130]
- Standard requires 2.3-100 µs LOS.
 Most interfaces are on the low end.
 Most interfaces can't keep clock sync after 80 bits
- Carriers tariffs based on failures and errors guarantees
 ⇒ Customer can cause excessive failures and no way for carriers to trace it.
- □ A single packet can disrupt a large number of users.
 □ APS is triggered ⇒ Disruption could last up to 50 ms. Raj Jain

Scrambling: Solutions

- ANSI T1X1.5+IETF recommend using 1+x⁴³ for PPP over SONET for STS-1 through STS-48. Higher or lower rates require further study.
- □ A path signal label different from 207 will be used to differentiate scrambled and non-scrambled payloads.
- □ Self-synchronous scrambler \Rightarrow error-multiplying. 1-bit error on the line \Rightarrow 2-bit errors in packet
- Some error patterns detectable w/o scrambler are undetectable with scrambler
- FCS bit ordering (lsb) and scrambler bit ordering (msb) also have some effect.

- 2. Scramble PPP before HDLC framing
 ⇒ Requires disabling errored HDLC
 frame discard. Does not protect against framer errors.
- 3. Scramble the SONET scrambler output.
- 4. Use 1+x²+x¹⁹+x²¹+x⁴⁰ set-reset frame synchronous scrambler
- 5. Avoid long sequences of zeros in the SONET scrambler output by pattern matching HDLC packet and byte-stuffing.

- IP over SONET = IP over PPP in HDLC-like framing over SONET/SDH
- SONET does not provide QoS, Dynamic bandwidth (SVCs), QoS multiplexing, traffic management
- Payload scrambling is a hot issue

References

- For a detailed list of references, see <u>http://www.cis.ohio-state.edu/~jain/</u> <u>refs/snt_refs.htm</u>
- □ RFC 1619, PPP over SONET/SDH,
- □ RFC 1662, PPP in HDLC-like Framing
- □ RFC 1661, The Point-to-Point Protocol (PPP)