Residential Broadband: Technologies for **High-Speed Access To Homes**

Raj Jain

<u>ht</u>

Raj Jain is now at Washington University in Saint Louis Jain@cse.wustl.edu

http://www.cse.wustl.edu/~jain/

n/

Rai Jain

- □ 56 kbps Modems, ISDN
- □ ADSL, VDSL
- □ HFC, FTTC, FTTH
- **Cable Modems**
- □ Cable Modem Standars: DOCSIS, 802.14, ...

Potential Applications

- □ Video on demand (VOD)
- □ Near video on demand (NVOD)
 - staggered starts
- Distance learning, Teleconferencing, Home shopping
- **D** Telecommuting
- □ Meter reading
- Security

Existing cable TV has the media but no switching

Existing phone service has switching but not enough bandwidth

RANs (Cont)

- □ DSL: Digital Subscriber Line (ISDN)
- □ ADSL: Asymmetric DSL
- □ VDSL: Very high data rate DSL
- □ HFC: Hybrid Fiber Coax
- □ FTTC: Fiber to the curb
- □ FTTH: Fiber to the home

Why Modems are Low Speed?

- \Box Telephone line bandwidth = 3.3 kHz
- □ V.34 Modem = 28.8 kbps \Rightarrow 10 bits/Hz
- Better coding techniques. DSP techniques.
- □ Cat 3 UTP can carry higher bandwidth
- □ Phone companies put 3.3 kHz filters at central office \Rightarrow Allows FDM

DSL

- Digital Subscriber Line = ISDN
- \bigcirc 64×2 + 16 + overhead
 - = 160 kbps up to 18,000 ft
- □ DSL requires two modems (both ends of line)
- Symmetric rates ⇒ transmission and reception on same wire ⇒ Echo cancellation
- □ Use 0 to 80 kHz \Rightarrow Can't use POTS simultaneously

DSL Technologies

- □ DSL: Digital Subscriber Line (ISDN)
- □ HDSL: High data rate DSL (T1/E1 on 2 pairs)
- □ SDSL: Single line DSL (T1/E1)
- □ ADSL: Asymmetric DSL
- □ RADSL: Rate-adaptive ADSL
- □ VDSL: Very high data rate DSL
- VADSL: Very high data rate Asymmetric DSL
 = VDSL
- **BDSL**: Another name for VDSL
- □ VDSLe: European version of VDSL

9

Raj Jain

HDSL

- □ Initially T1/E1 over copper used AMI coding ⇒ Repeaters every 3000 6000 ft
- ❑ Uses 1.5 MHz for 1.5 Mbps ⇒ Wasteful of bandwidth
 ⇒ Interference ⇒ Can't put more than 1 circuit in a
 50 pair cable
- □ HDSL transmits T1/E1 over two pairs using 80 to 240 kHz ⇒ repeaters at 12,000 ft
- Used in PBX interconnection, cellular antenna stations, interexchange POPs
- SDSL = Single pair version of HDSL. T1/E1 simultaneously. Up to 10000 ft.

ADSL

- □ Asymmetric Digital Subscriber Line
- $\Box Asymmetric \Rightarrow upstream << Downstream$
- $\Box \text{ Symmetric} \Rightarrow \text{Significant decrease in rate}$
- □ 6 Mbps downstream, 640 kbps upstream
- Using existing twisted pair lines
- ❑ No interference with phone service (0-3 kHz)
 ⇒ Your phone isn't busy while netsurfing
- **Up** to 7500 m
- ANSI T1.413 Standard
- Quickest alternative for Telcos

Why Asymmetric?

- \Box Unshielded twisted pair \Rightarrow Crosstalk
- ❑ Downstream signals are all same amplitude ⇒ Not affected
- □ Upstream signals start at different distances ⇒
 Different amplitudes ⇒ Weak signals are highly affected
- **Solutions:**
 - 1. Use asymmetric rates
 - 2. Use lower frequencies for upstream (Cross talk increases with frequencies)

VDSL

- Very High-Speed Digital Subscriber Lines
- □ Also called VADSL, BDSL, VHDSL
- ANSI T1E1.4 standardized the name VDSL and ETSI also adopted it
- □ VDSLe to denote European version
- □ For use in FTTC systems
- Downstream Rates: 51.84 -55.2 Mbps (300 m), 25.92-27.6 Mbps (1000 m), 12.96 - 13.8 Mbps (1500 m)

VDSL (Cont)

- Upstream Rates: 1.6-2.3 Mbps,
 19.2 Mbps, Same as downstream
- Admits passive network termination
 ⇒ Can connect multiple VDSL modems like extension phones
 (ADSL memoirs extinction termination)
 - (ADSL requires active termination)
- Unlike ADSL, VDSL uses ATM to avoid packet handling and channelization
- Orkit Communications (Israel) demoed VDSL modems at Supercomm'96

Cable Modems

- □ Modulate RF frequencies into cable.
- ❑ Cost \$395 to \$995
- □ If cable is still one-way, upstream path through POTS
- □ \$30 to \$40 per month flat service charge
- □ 45 Mbps downstream, 1.5 Mbps upstream
- □ MAC protocol required to share upstream bandwidth
- $\Box Sharing \Rightarrow Security issues$
- Servers at headend to avoid Internet bottleneck
- □ @home Plans to create high-speed backbone across US

DOCSIS

- Data over Cable Service Interface Specification
- Developed by Multimedia Cable Network System Partners (MCNS): TCI, Time Warner, ...
- Cablelabs helped manage changes
- □ Rapidly develop standards (Faster than IEEE)
- □ Intellectual Property Agreement among partners
- V1.0 initial release in December 1996, Final draft in July 1998. Many deployments.
- V1.1 in March 1999 added QoS (802.1p), multicast, fragmentation. Required for packet voice.
- □ V1.2 will add higher speed upstream

Raj Jain

DOCSIS: Key Features

- \Box Switched Ethernet service \Rightarrow One large LAN
- Downstream packets use 188-byte MEPG2 transport stream frames
 - \Rightarrow Compatible with digital video standards
 - \Rightarrow Allows mixing data and video in the same channel
- Upstream is slotted. Head-end allocates minislots.
- Packets can be optionally encrypted using DES for privacy

 Bridge

IEEE 802.14

- □ Started November 1994. Still continuing.
- □ ATM and Ethernet interfaces
- Different MAC and PHY than DOCSIS
- Addresses: Permanent (48-bit) and 14-bit local id

Other Standards

- OpenCable Project:
 - DOCSIS-like effort for set-top boxes
 - Initiated by cable industry
 - Managed by Cablelabs
 - Builds on the DOCSIS for new interactive services
 - o Ref: <u>www.opencable.com</u>
- PacketCable Project:
 - DOCSIS-like effort for packet voice
 - Initiated by cable industry. Managed by Cablelabs.
 - POTS over HFC
 - o Ref: <u>www.packetcable.com</u>

Raj Jain

Other Standards (Cont)

DAVIC/DVB:

- Digital Audio Video Council/Digital Video Broadcasters
- European set-top box designers
- ATM cell based transport
- o Ref: <u>www.davic.org</u>
- IETF IP over Cable Data Network working group, <u>http://www.ietf.org/html.charters/ipcdn-charter.html</u>
- SCTE (Society of Cable Telecommunications Engineers), <u>www.scte.org</u>

Fiber to the Curb (FTTC) Coax Headend or TP Fiber **Digital Terminal** Coax and twisted pair for the last 100-300 m □ Coax is used for analog video, TP is used for POTS Baseband \Rightarrow No frequency multiplexing \Box Passive optical network \Rightarrow signal is optically broadcast to several curbs \Rightarrow Time division multiplexing Up to 50 Mbps downstream, Up to 20 Mbps upstream Co-exist with POTS or ISDN on the same cable pair Twisted pair \Rightarrow EMI \Rightarrow withstand legal 400W radio transmissions at 10 m Raj Jain

Fiber to the Home (FTTH)

- □ Fully optical \Rightarrow No EMI
- Initially passive optical network
 ⇒ Time division multiplexing
- Upstream shared using a MAC
- 155 Mbps bi-directional
- Need new fiber installation

Comparison of RANs

Tech-	Typical	Typical	Max	Homes
nology	Downstream	Upstream	Distance	Per Opt.
	Rate	Rate		Unit
HFC	45 Mbps	1.5 Mbps	N/A	500
	Shared	Shared		
FTTC	25-50 Mbps	25-50	100 m	10-50
		Mbps		
FTTH	155 Mbps	155 Mbps	N/A	10-200
ADSL	6 Mbps	640 kbps	4,000 m	1,000
VDSL	13-50 Mbps	1.6-5	2,000 m	100
		Mbps		
				Rai

ADSL Vs Cable Modems

ADSL	Cable Modems		
Phone company	Cable company		
Switching experience	No switching but high		
but low bandwidth ckts	bandwidth infrastructure		
Point-to-point \Rightarrow Data	Broadcast. Sharing \Rightarrow		
privacy	More cost effective		
Currently 1.5 to 8 Mbps	10 to 30 Mbps		
Perf = fn(location)	Independent of location		
Phone everywhere	Cable only in suburbs		
	(not in office parks)		
Existing customers \Rightarrow	New Revenue		
ISDN and T1 obsolete			
	Ra	i Ja	

- □ DirecPC from Hughes
- One-way high-speed connection

□ Fixed, high, directional antennas ⇒ Lower loss, no handoff

- High Speed Access to Home: ADSL, VDSL, HFC, FTTC, FTTH
- □ 6 to 155 Mbps downstream, 1.5 Mbps upstream
- Both cable and telecommunication companies are trying to get there with minimal modification to their infrastructure
 Raj Jain

RBB: Key References

- For a detailed list of references, see <u>http://www.cse.ohio-state.edu/~jain/</u> <u>refs/rbb_refs.htm</u>
- Cable Data Networks, <u>http://www.cse.ohio-</u> <u>state.edu/~jain/cis788-97/cable_modems/index.hm</u>
- Digital Subscriber Lines and Cable Modems, <u>http://www.cse.ohio-state.edu/~jain/cis788-</u> <u>97/rbb/index.htm</u>

References (Cont)

- "Cable TV access method and physical layer specification," IEEE Project 802.14/a Draft 3 Revision 1, August 1998, <u>http://www.walkingdog.com/catv/</u> <u>ieee_802.14d3r2.pdf</u>
- □ ANSI T1.413, ADSL Metallic Interface
- IEEE 802.14 Working group, <u>http://www.walkingdog.com</u>
- □ The ADSL Forum, <u>http://www.adsl.com</u>
- □ Cable Labs, <u>http://www.cablemodem.com</u>
- □ Cable Modem FAQ,

http://www.cox.com/modemfaq.html

Raj Jain