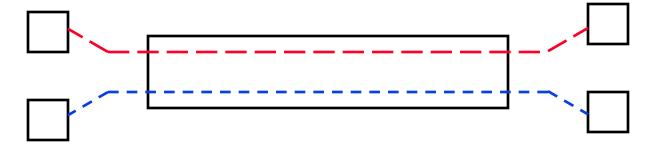
Optical DWDM Networks

Raj Jain

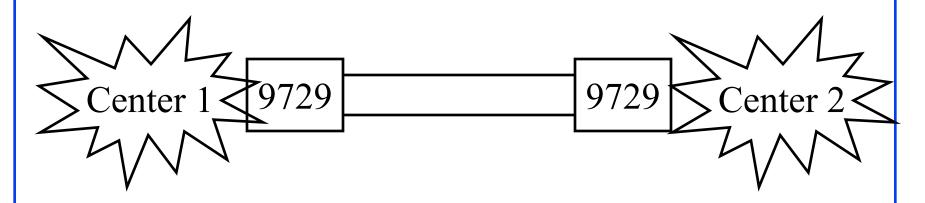

Raj Jain is now at Washington University in Saint Louis Jain@cse.wustl.edu

http://www.cse.wustl.edu/~jain/

- Sparse and Dense WDM
- Recent WDM Records
- WDM Applications and Sample Products
- □ Key Technologies
- Types of Fibers
- Amplifiers
- Upcoming Technologies

Sparse and Dense WDM

- □ 10Base-F uses 850 nm
- □ 100Base-FX uses 1310 nm
- □ Some telecommunication lines use 1550 nm
- □ WDM: 850nm + 1310nm or 1310nm + 1550nm
- □ Dense ⇒ Closely spaced ≈ 1nm separation

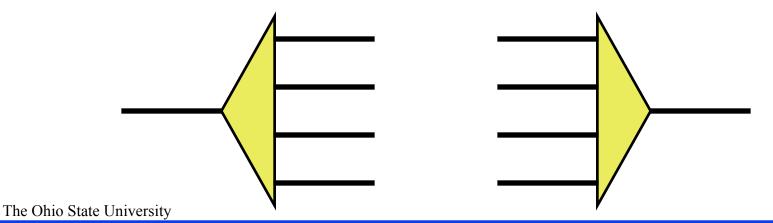

Recent WDM Records

- □ 40 Gbps over a single wavelength upto 65 km demonstrated by Alcatel in Summer of 1998.
 Modulation gave 20 GHz at 3-dB point. The distance limitation was due to PMD.
- \square 2.64 Tbps to 120km (NEC'96): 132 $\lambda \times 20$ Gbps
- □ 1.4 Tbps 600 km (NTT'97): 70 $\lambda \times 20$ Gbps
- □ 1 Tbps 400 km (Lucent 97): 100 λ × 10 Gbps using TrueWave Fiber
- \square 320 Gbps 7200 km (Lucent 97): 64 $\lambda \times 5$ Gbps

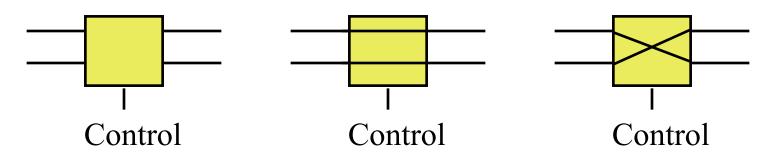
WDM Applications

- \square WANs: Fiber links \Rightarrow WDM \Rightarrow DWDM Links
- Undersea Links: Amplifiers ⇒ High maintenance cost
 ⇒ Can't put too many fibers
- □ DWDM highly successful in long-haul market.
- Not yet cost-competitive in metro market.
- Bandwidth demand is low and more dynamic.

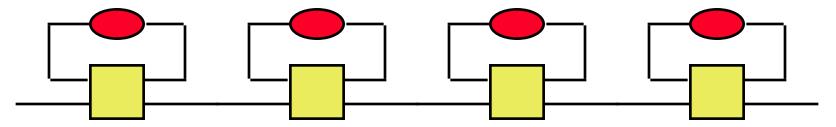
Sample Products

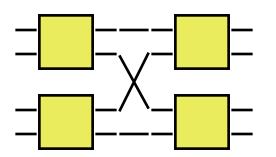

- □ 1994: IBM 9729. First commercial system.
- □ Allows 10 full-duplex channels in one fiber upto 50 kms. Designed to connect large mainframe datacenters.
- □ Channel spacing is 1 nm
- Distance limited to 50km to avoid amplifiers.

Products (Cont)

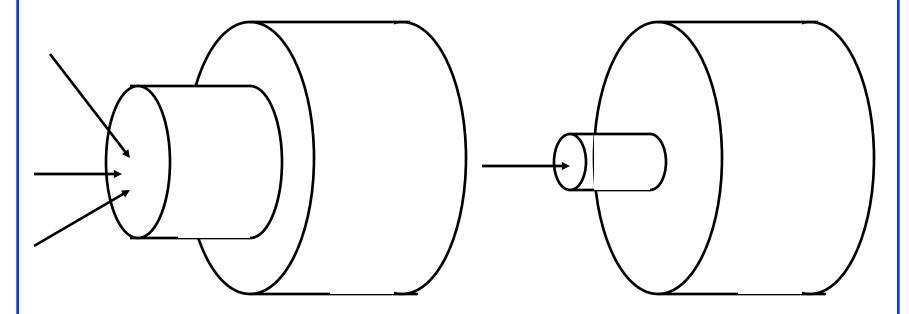

- Lucents's WaveStar product allows 400 Gbps over a single fiber using 80 channel DWDM (January 1998)
- Lucent's LazrSPEED allows 10 Gb/s up to 300 on LazrSPEED multimode fibers using low cast shortwavelength (850nm) vertical cavity surface-emitting laser (VCSEL) transceivers. Demoed at May 99 Interop.
- Monterey make wavelength routers that allow mesh architecture and use OSPF or PNNI like routing.

Key Technologies


- □ Tunable Lasers
- □ Fast tuning receivers
- Frequency converters
- Amplifiers
- Splitters, Combiners

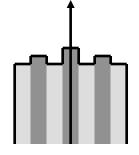

Directional Couplers

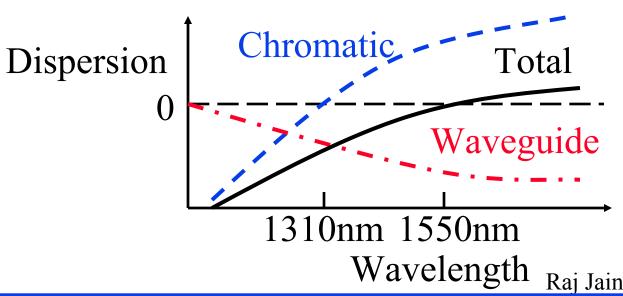
□ Can be used in bus networks:


□ Larger switches can be built out of 2×2 switches

The Ohio State University

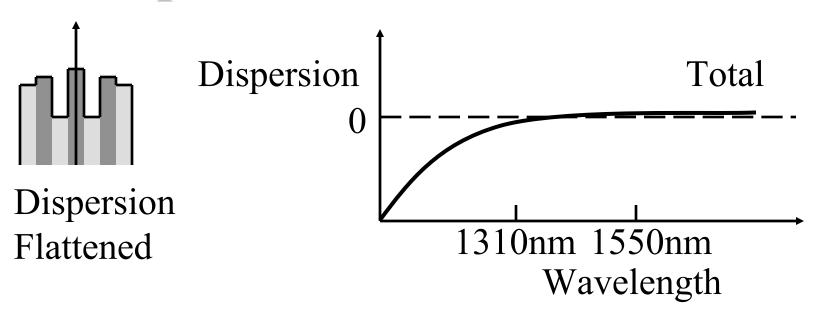
Types of Fibers


- Multimode Fiber: Core Diameter 50 or 62.5 μm Wide core ⇒ Several rays (mode) enter the fiber Each mode travels a different distance
- □ Single Mode Fiber: 10-mm core. Lower dispersion.


The Ohio State University

Dispersion Shifted Fiber

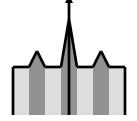
- □ Zero dispersion at 1310nm
- □ 1550 nm has a lower attenuation
- □ EDFAs operate at 1550 nm \Rightarrow DWDM systems at 1550 nm
- \square Special core profile \Rightarrow zero dispersion at 1550 nm



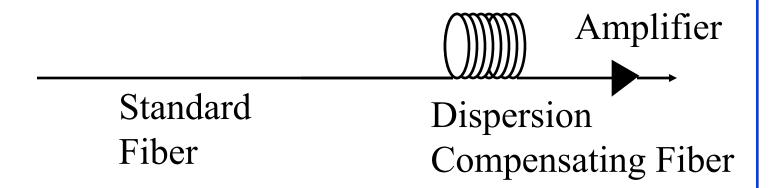
Dispersion Shifted

The Ohio State University

Dispersion Flattened Fiber


- □ Less than 3 ps/nm/km over 1300-1700 nm
- □ Use 1300 nm now and 1550 in future
- □ Low dispersion causes four-way mixing
 - ⇒ DSF/DFF not used in DWDM systems

Four-way Mixing (FWM)


- Caused when multiple wavelengths travel in the same phase for long time
- New signals are generated at the same frequency spacing as original: $w_1, w_2 \Rightarrow 2w_2-w_1, 2w_1-w_2$
- \square Closer channels \Rightarrow More FWM
- \square More power \Rightarrow More FWM
- □ Less dispersion ⇒ More time same phase⇒ More FWM

Dispersion Optimized Fiber

- □ Non-zero dispersion shifted fiber (NZ-DSF)
 - \Rightarrow 4 ps/nm/km near 1530-1570nm band
- Avoids four-way mixing
- □ Different vendors have different characteristics:
- □ Tru-Wave from Lucent. SFM-LS from Corning
- Dispersion shifting reduces the effective area of core
 - \Rightarrow increases power density \Rightarrow More non-linearity
- Large effective area fibers (LEAF) from Corning: DOF with larger effective area

Dispersion Compensating Fiber

- □ Standard fiber has 17 ps/nm/km
- □ DCF has -100 ps/nm/km
- □ 100 km of standard fiber followed by 17 km of DCF
 ⇒ zero dispersion
- □ DCF has much narrower core ⇒ More attenuation and non-linearity ⇒ Need to amplify

Polarization Mode Dispersion

- Each light pulse consists of two orthogonally polarized pulses.
- □ These polarizations experience different delays through the fiber.
- □ Polarization Mode Dispersion (PMD) limits distances to square of the bit rate
 - \Rightarrow OC-192 to 1/16th of OC-48, OC-768 to 1/256th.
- Need Regenerators to compensate for PMD
 - \Rightarrow Expensive
 - ⇒ Most DWDM systems operate at OC-48

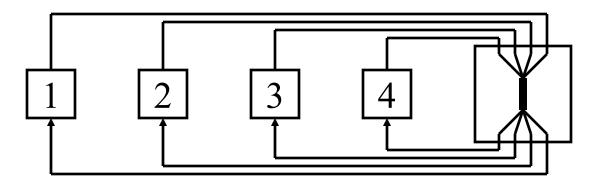
Plastic Fiber

- Original fiber (1955) was plastic
 (organic polymer core rather than glass)
- □ 980µ core of PolyMethylMethyelAcrylate (PMMA)
- □ Large Dia ⇒ Easy to connectorise, cheap installation
- Higher attenuation and Lower bandwidth than multimode fiber
- □ Can use 570-650 nm (visible light) LEDs and lasers (Laser pointers produce 650 nm)
- OK for short distance applications and home use
- Cheaper Devices: Plastic amplifiers, Plaster wave guide grafting routers, plastic lasers

The Ohio State University

Hard Polymer Clad Silica Fiber

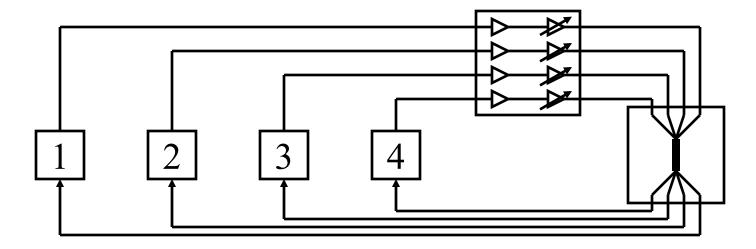
- \square 200 micron glass core \Rightarrow Easy to join
- □ Uses same wave length (650nm) as plastic fiber
- Lower attenuation and lower dispersion than plastic fiber
- 155 Mbps ATMF PHY spec for plastic and HPCF up to 100m.


Amplifiers

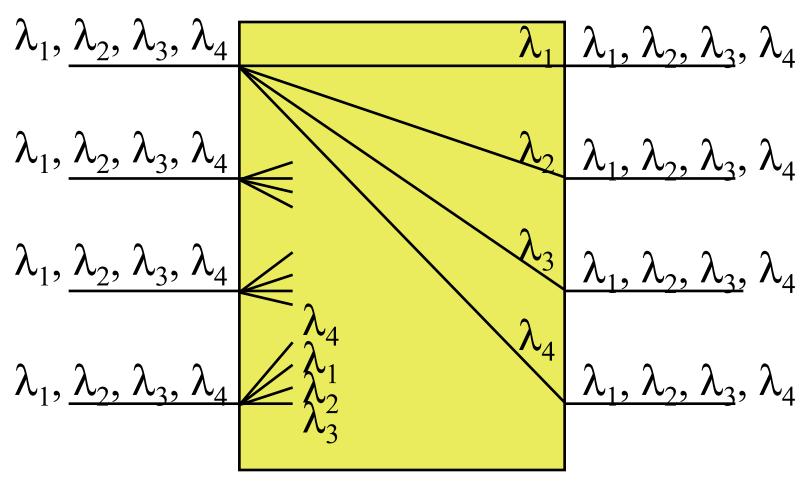
- □ Erbium-Doped Fiber Amplifiers (EDFAs)
- □ Flat response in 1535-1560 nm Can be expanded to 40 nm width
- Dynamic Non-linearity: Response changes if one channel is not used ⇒ problem as channels are dropped and added
- Causes rapid transient power fluctuations if there are multiple EDFAs in a link

Upcoming Technologies

- □ Simple Optical Networks: Wavelength add-drop, broadcast and select
- Wavelength Routed Networks: One wavelength endto-end
- Optically Switched Networks: Wavelength routing with conversion
- Optical Time Domain Multiplexing (OTDM):
 SONET-like synchronous connections
- Optical Packet Switching: Need optical logic

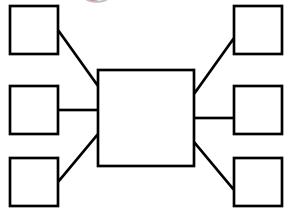

Broadcast and Select Networks

- □ Early 1990 used in LANs, e.g., Rainbow-1
- \square Propagation delays \Rightarrow Limited to LANs
- Non-tunable transmitters and receivers
 Tunable transmitters Space division switch
 Tunable receivers Allows multicasts
 Both tunable Allows more nodes than λs
- □ Broadcast Power wasted


 The Ohio State Pliffiers just before the receiver filter

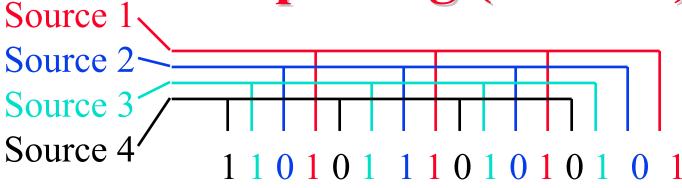
Centralized WDM Switch

- □ Tunable components moved to a central switch
- Each station has a preassigned receive wavelength
- □ Switch converts the signal to receiver wavelength

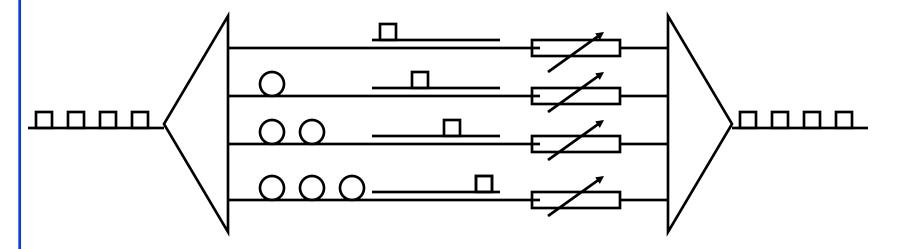

Wavelength Router

Router = Crossconnect with wavelength conversion

The Ohio State University


Wavelength Routed Networks

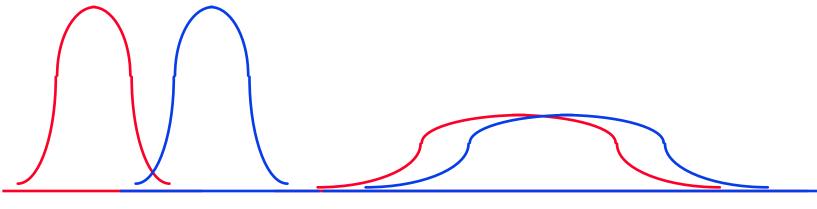
- □ Either transmitters, receivers, or both tunable.
- Switches are programmable.
- Signaling channel could be electronic or optical
- Wavelength collisions ⇒ Suitable for medium size networks.
- Wavelength converters help avoid wavelength collisions


The Ohio State University

Optical Time Division Multiplexing (OTDM)

 \square Optics faster than electronics \Rightarrow Bit multiplexing.

OTDM Implementation



Splitter Delay lines Modulators Combiner

- □ A laser produces short pulses.
- □ Pulse stream divided in to 4 substreams
- Each substream modulated by different source
- Substreams combined.

Solitons

- □ Light velocity is a function of amplitude
 - \Rightarrow Index of dispersion is non-linear:
 - \circ n=n₀ + n₂E², Where, E=field strength
 - No dispersion if the pulse is sech(t)
- Need high amplitude pulses (100 mW) and high non-linearity

The Ohio State University

Summary

- □ DWDM allows 32- to 64- channels per fiber
- □ Several new types of fibers with different dispersion characteristics
- Wavelength routers will allow all-optical networks

References:

- □ See references in http://www.cse.ohio-state.edu/~jain/refs/opt_refs.htm
- Recommended books on optical networking,
 http://www.cse.ohio-state.edu/~jain/opt_book.htm
- □ Newsgroup: sci.optics.fiber

Organizations

- □ National Transparent Optical Network Consortium (NTONC) connects San Fransisco and Los Angeles at 10 Gbps. Link is a part of DARPA's SuperNet.
 NTONC members include Nortel, GST Telecomunications, Lawerence Livermore National Laboratory, and Sprint
- □ Data Aware Transport Activity (D.A.T.A.) for data over SONET