

- **Technology** Trends
- Networking Trends

Technology Trends

- 1. Networking Bottleneck
- 2. Fast Immediacy

Impact on R&D

Impact on Education

- 3. Convergence
- 4. Information Glut

Trends: Networking Bottleneck

- Communication is more critical than computing
 - Greeting cards contain more computing power than all computers before 1950.
 - Genesis's game has more processing than 1976 Cray supercomputer.
- □ Networking speed is the key to productivity
- E-Commerce ⇒ 20-30% of revenue spent on networking
- □ High bandwidth \Rightarrow More bits per second Hundreds of telegrams per day \Rightarrow Fast pace of life The Ohio State University The Ohio State University

Impact on R&D

- ❑ Too much growth in one year
 ⇒ Can't plan too much into long term
- □ Long term = 1_2 year or 10_2 years at most
- □ Products have life span of 1 year, 1 month, ...
- Short product development cycles.
 Chrysler reduced new car design time from 6 years to 2.
- Distance between research and products has narrowed
 ⇒ Collaboration between researchers and developers
 ⇒ Academics need to participate in industry consortia

Impact on Education

 Technology is changing faster than our ability to learn

 \Rightarrow Your value (salary) decreases with experience (years out of college)

- □ Recent graduates know C++, HTML, Java, TCP/IP, ...
- Need personal career management strategies
- New Opportunities/Challenges for educators
- □ New challenges for learners

Trend: Convergence

Entertainment Video Games Publishing News

Advertising		Cable TV		Telephone		Computer
	Digital Media Production		Video Transport	Voice Transpor	t	Digital Media Storage/ Handling

Convergence (Cont) Content Computing Computing Communications Merging of Content Providers and Content transporters

- Phone companies, cable companies, entertainment industry, and computer companies
- Single department for telephone and computer networking
- □ LAN/WAN convergence

Trend: Information Glut

- Web ⇒ Information production and dissemination costs are almost zero
 - \Rightarrow Too much information
 - = Needles in the haystack
- □ Thousands of hits on each search
- □ Need tools for summarizing the information
- Opportunities for artificial intelligence
- Need to express information so that both human and computers can understand

Networking Trends

- Faster Media
- More Traffic
- □ Traffic > Capacity
- ATM in Backbone
- □ Everything over IP
- Traffic Engineering
- All-layer Routing

Trend: Faster Media

- One Gbps over 4-pair UTP-5 up to 100 m 10G being discussed.
 Was 1 Mbps (1Base-5) in 1984.
- Dense Wavelength Division Multiplexing (DWDM) 64×OC-192 = 0.6 Tbps OC-768 = 40 Gbps over a 1λ to 65 km [Alcate198] 400 Gbps using 80λ products. Was 100 Mbps (FDDI) in 1993.
- 11 Mbps in-building wireless networks Was 1 Mbps (IEEE 802.11) in 1998.
 2.5 Gbps to 5km using light in open air

The Ohio State University

Trend: Faster Media

- One Gbps over 4-pair UTP-5 up to 100 m Was 1 Mbps (1Base-5) in 1984.
- Dense Wavelength Division Multiplexing (DWDM) allows 64 wavelengths in a single fiber 64×OC-192 = 0.6 Tbps OC-768 = 40 Gbps demonstrated in 1998. Was 100 Mbps (FDDI) in 1993.
- 11 Mbps in-building wireless networks Was 1 Mbps (IEEE 802.11) in 1998.

Trend: More Traffic

- Number of Internet hosts is growing superexponentially.
- □ Traffic per host is increasing:
 - Cable modems allow 1 to 10 Mbps access from home
 - 6-27 Mbps over phone lines using ADSL/VDSL
- □ Bandwidth requirements are doubling every 4 months

Trend: Traffic > Capacity							
Expensive Bandwidth	Cheap Bandwidth						
 Sharing Multicast Virtual Private Networks Need QoS Likely in WANs 	No sharing Unicast Private Networks QoS less of an issue Possible in LANs						

Trend: ATM in Backbone

- Most carriers including AT&T, MCI, Sprint, UUNET, have ATM backbone
- Over 80% of the internet traffic goes over ATM
- □ ATM provides:
 - Traffic management
 - Voice + Data Integration: CBR, VBR, ABR, UBR
 - Signaling
 - Quality of service routing: PNNI
- ATM can't reach desktop: Designed by carriers.
 Complexity in the end systems. Design favors voice.

The Ohio State University

Trend: Everything over IP

- □ Data over IP \Rightarrow IP needs Traffic engineering
- □ Voice over IP \Rightarrow Quality of Service and Signaling
- Internet Engineering Task Force (IETF) is the center of action.
 - Attendance at ATM Forum and ITU is down.

Trend: Traffic Engineering

- User's Performance Optimization
 ⇒ Maximum throughput, Min delay, min loss, min delay variation
- □ Efficient resource allocation for the provider
 - \Rightarrow Efficient Utilization of all links
 - \Rightarrow Load Balancing on parallel paths
 - \Rightarrow Minimize buffer utilization
 - Current routing protocols (e.g., RIP and OSPF) find the shortest path (may be over-utilized).
- □ QoS Guarantee: Selecting paths that can meet QoS
- Enforce Service Level agreements
- □ Enforce policies: Constraint based routing \supseteq QoSR

The Ohio State University

Trend: All-Layer Routing

- Old: All packets followed the same path, stood in the same FIFO queue. Path based on Destination IP Address.
- New: Buffering, Queueing, Scheduling, and path based on Destination IP address, Source IP address, TCP Ports, Type of Service, ...

- □ Networking is growing exponentially
- \Box It is impacting all aspects of life \Rightarrow Networking Age
- Profusion of Information
- □ Virtualization, Globalization, Immediacy

References

- See Reference on Networking history and trends, <u>http://www.cse.ohio-state.edu/~jain/refs/ref_trnd.htm</u>
- Books on Networking history and trends, <u>http://www.cse.ohio-state.edu/~jain/refs/trn_book.htm</u>