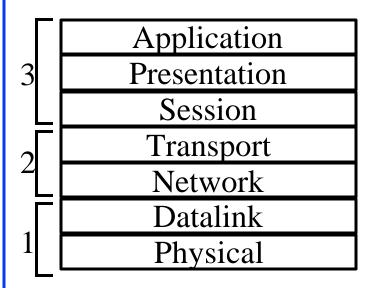
A Review of Key Networking Concepts

Raj Jain

Raj Jain is now at Washington University in Saint Louis Jain@cse.wustl.edu

http://www.cse.wustl.edu/~jain/

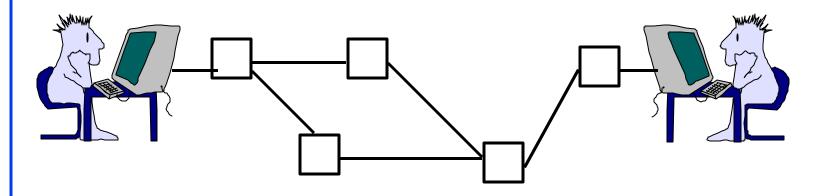

The Ohio State University

Kaj Jain

- □ ISO/OSI Reference Model
- HDLC
- □ Ethernet/IEEE 802.3 LANs
- □ IP, ARP
- □ TCP
- DNS

ISO/OSI Reference Model

File transfer, Email, Remote Login ASCII Text, Sound


Establish/manage connection

End-to-end communication: TCP

Routing, Addressing: IP

Two party communication: Ethernet

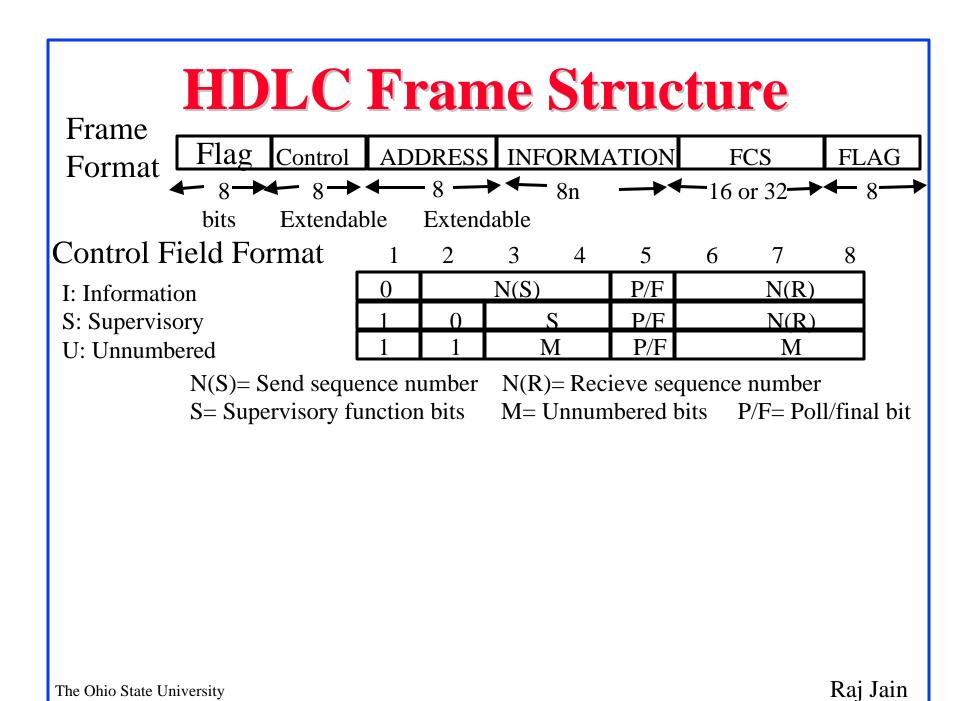
How to transmit signal: Coding

The Ohio State University

TCP/IP Reference Model

- □ TCP = Transport Control Protocol
- □ IP = Internet Protocol (Routing) TCP/IP Ref Model TCP/IP Protocols

The Ohio State University


OSI Ref Model

Application		ETD	Tala	o.4	HTTD		Application
Application		FTP	Tem	eı	HTTP		Presentation
Transport		T	ТСР		HDD		Session
		1'	CP	UDP			Transport
Internetwork		IP					Network
Host to Network		Ether	Packet		oint-to- Point		Datalink
		net	Radio				Physical

Layered Packet Format

□ Nth layer control info is passed as N-1th layer data. FTP FTP Data Header TCP TCP Data Header IP IP Data Header Ethernet Ethernet Ethernet Data Header Trailer

The Ohio State University

HDLC Frames

- □ Information Frames: User data
 - Piggybacked Acks: Next frame expected
 - Poll/Final = Command/Response
- □ Supervisory Frames: Flow and error control
 - Go back N and Selective Reject
 - \rightarrow Final \Rightarrow No more data to send
- Unnumbered Frames: Control
 - Mode setting commands and responses
 - Information transfer commands and responses
 - Recovery commands and responses
 - Miscellaneous commands and responses

Interconnection Devices LAN= B Collision Router Domain Extended LAN =Broadcast domain Application **Application** Gateway **Transport** Transport Network Network Router Datalink Datalink Bridge/Switch Physical Physical Repeater/Hub Raj Jain The Ohio State University

Interconnection Devices

- **Repeater**: PHY device that restores data and collision signals
- **Hub:** Multiport repeater + fault detection and recovery
- **Bridge:** Datalink layer device connecting two or more collision domains. MAC multicasts are propagated throughout "extended LAN."
- Router: Network layer device. IP, IPX, AppleTalk. Does not propagate MAC multicasts.
- □ **Switch**: Multiport bridge with parallel paths

These are functions. Packaging varies.

IEEE 802 Address Format

q 48-bit:1000 0000 : 0000 0001 : 0100 0011

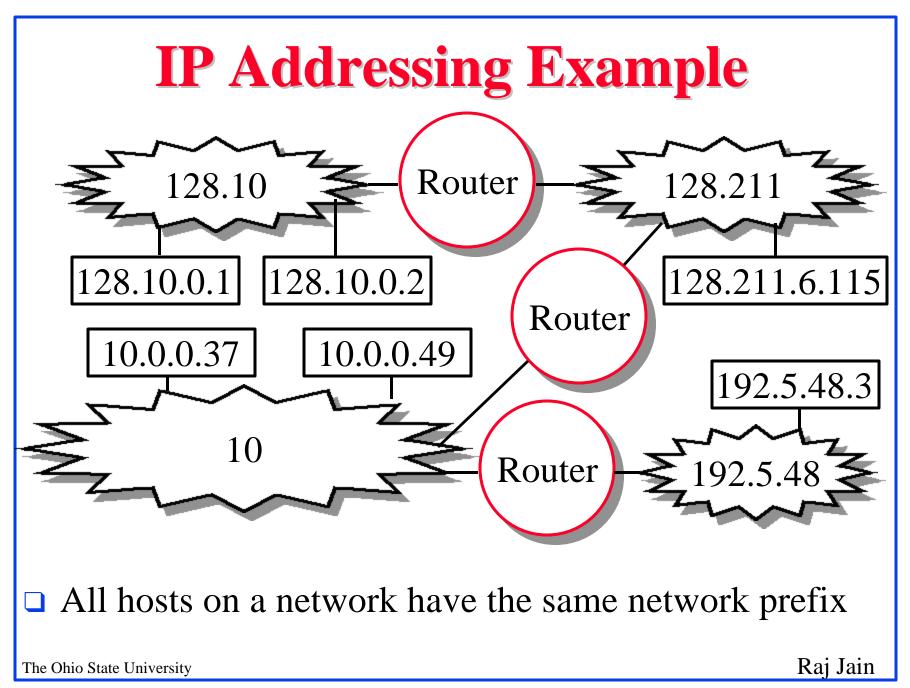
: 0000 0000 : 1000 0000 : 0000 1100

= 80:01:43:00:80:0C

Organizationally Unique

Identifier (OUI)

Individual/ Universal/
Group Local


Oul Owner

1 1 22 24

- ☐ Multicast = "To all bridges on this LAN"
- Broadcast = "To all stations"

= 1111111....111 = FF:FF:FF:FF:FF

The Ohio State University

IP Datagram Format

Vers H. Len	ToS	Total Length				
Identif	Flags	Fragment Offset				
Time to live Protocol Type Header Checksum						
Source IP Address						
Destination IP Address						
IP Opt	Padding					
_ Data						

IP Header Format

- □ Version (4 bits)
- □ Internet header length (4 bits): in 32-bit words. Min header is 5 words or 20 bytes.
- □ Type of service (8 bits): Reliability, precedence, delay, and throughput
- □ Total length (16 bits): header + data in bytes Total must be less than 64 kB.
- □ Identifier (16 bits): Helps uniquely identify the datagram during its life for a given source, destination address

IP Header (Cont)

□ Flags (3 bits): More flag - used for fragmentation

No-fragmentation

Reserved

- □ Fragment offset (13 bits): In units of 8 bytes
- □ Time to live (8 bits): Specified in router hops
- □ Protocol (8 bits): Next level protocol to receive the data
- □ Header checksum (16 bits): 1's complement sum of all 16-bit words in the header

IP Header (Cont)

- Source Address (32 bits): Original source. Does not change along the path.
- Destination Address (32 bits): Final destination. Does not change along the path.
- Options (variable): Security, source route, record route, stream id (used for voice) for reserved resources, timestamp recording
- Padding (variable):Makes header length a multiple of 4
- □ Data (variable): Data + header \leq 65,535 bytes

Address Resolution Protocol

- □ Problem: Given an IP address find the MAC address
- Solution: Message Exchange: ARP
 - The host broadcasts a request: "What is the MAC address of 127.123.115.08?"
 - The host whose IP address is 127.123.115.08 replies back: "The MAC address for 127.123.115.08 is 8A-5F-3C-23-45-56₁₆"

TCP Header Format

Source Port	Dest Port	Seq No	Ack No	Data Offset	Resvd	Control	Window
					6		16
Check sum	T-Urge:	nt Op	otions	Pad	Data		
16		6				ize in bit	S

TCP Header

- □ Source Port (16 bits): Identifies source user process 20 = FTP, 23 = Telnet, 53 = DNS, 80 = HTTP, ...
- Destination Port (16 bits)
- Sequence Number (32 bits): Sequence number of the first byte in the segment. If SYN is present, this is the initial sequence number (ISN) and the first data byte is ISN+1.
- □ Ack number (32 bits): Next byte expected
- □ Data offset (4 bits): Number of 32-bit words in the header
- □ Reserved (6 bits)

TCP Header (Cont)

☐ Control (6 bits): Urgent pointer field significant,

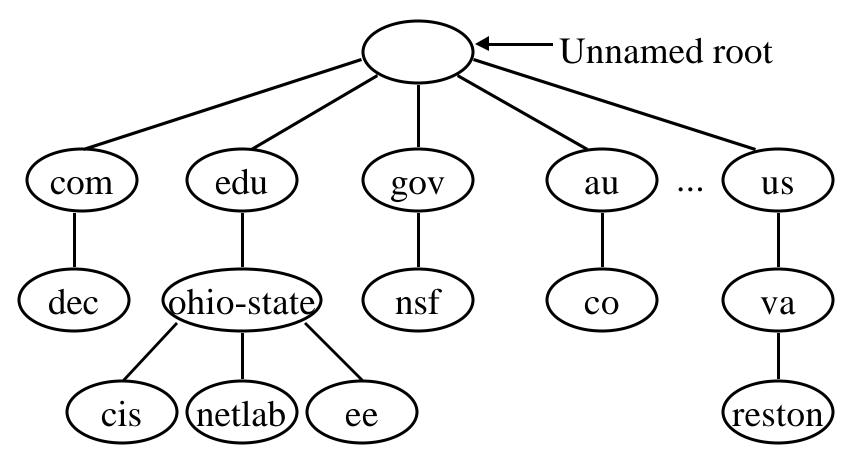
Ack field significant,

Push function,

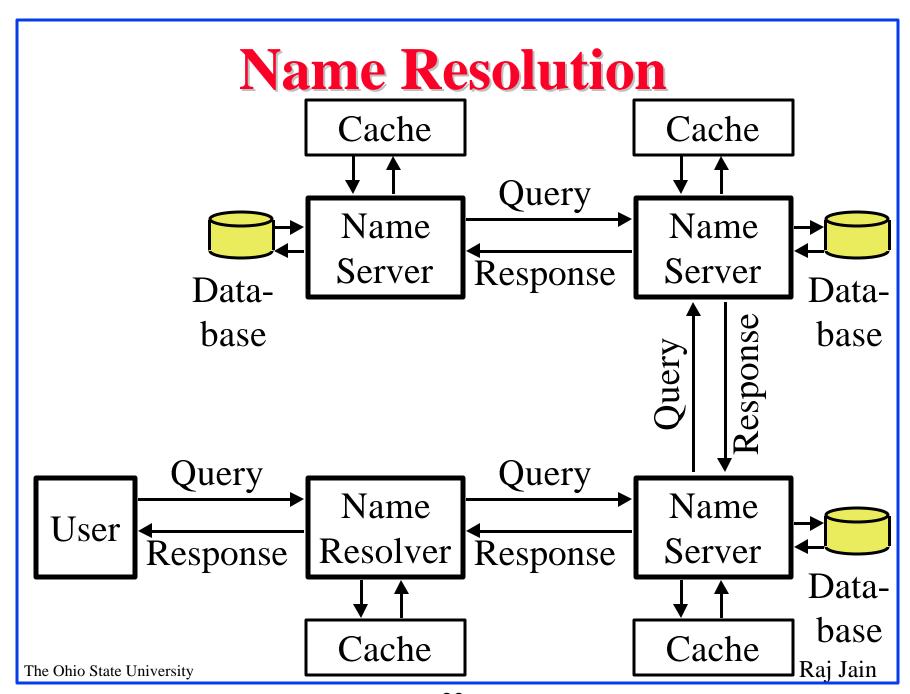
Reset the connection,

Synchronize the sequence numbers,

No more data from sender



q Window (16 bits): Will accept [Ack] to [Ack]+[window]


TCP Header (Cont)

- □ Checksum (16 bits): covers the segment plus a pseudo header. Includes the following fields from IP header: source and dest adr, protocol, segment length. Protects from IP misdelivery.
- □ Urgent pointer (16 bits): Points to the byte following urgent data. Lets receiver know how much data it should deliver right away.
- Options (variable):
 Max segment size (does not include TCP header, default 536 bytes), Window scale factor, Selective Ack permitted, Timestamp, No-Op, End-of-options

Domain Name System

Humans can remember names. Computers use addresses Cobra.netlab.ohio-state.edu = 164.107.61.202

Name Resolution (Cont)

- Each computer has a name resolver routine, e.g., gethostbyname in UNIX
- □ Each resolver knows the name of a local DNS server
- □ Resolver sends a DNS request to the server
- □ DNS server either gives the answer, forwards the request to another server, or gives a referral
- □ Referral = Next server to whom request should be sent

The Ohio State University

Raj Jain

23

- □ ISO/OSI reference model has seven layers. TCP/IP Protocol suite has four layers.
- □ Ethernet/IEEE 802.3 uses CSMA/CD.
- □ IP addresses are 32 bit long
- □ ARP converts IP addresses to datalink addresses
- TCP applications are identified by port numbers

Homework

□ For each of the following addresses: indicate whether it is a multicast and whether it is a locally assigned address?

80:02:45:00:00:00

40:02:45:00:00:01

Were these addresses assigned by the same manufacturer?

The Ohio State University

Raj Jain

25