




□ Integrated services

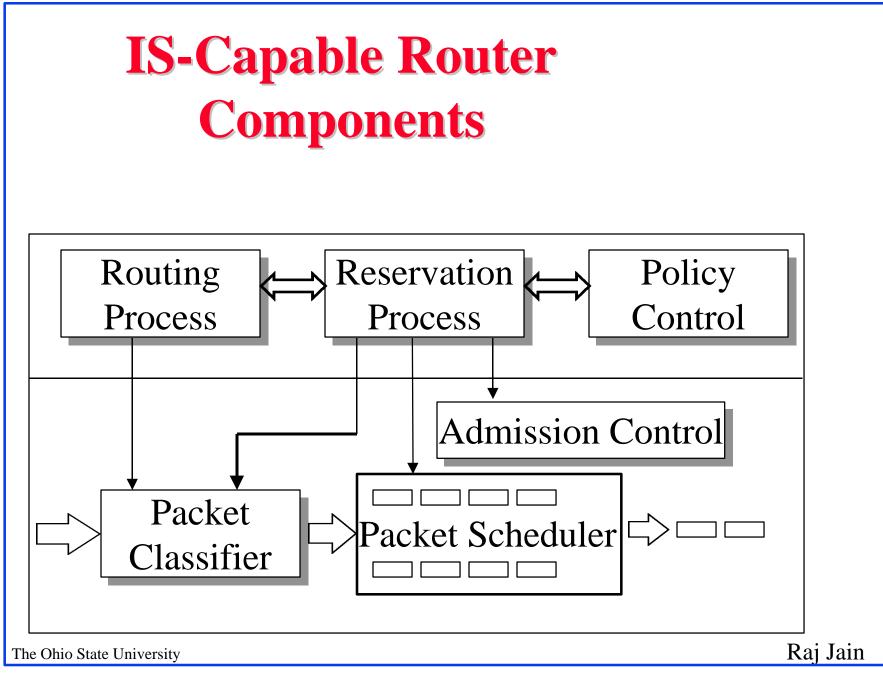
- □ Resource Reservation Protocol: RSVP
- □ Real-time Transport Protocol: RTP, RTCP
- **Real-Time Streaming Protocol: RTSP**
- □ Multicast Backbone: MBONE, SDP
- □ Connection-oriented IP: ST2+
- Note: Multicasting protocols were covered in the last class.

#### **Multimedia on the Internet**

- □ Specify source traffic requirements
- Protocols to create and maintain resource reservations
- □ Routing protocols that support QoS and multicast
- Transport protocols for error and flow control
- Access control
- □ Packet scheduler to provide QoS:

#### **Multimedia on the Internet**

- Specify source traffic requirements
  Flow specs from INTSERV working group
- Protocols to create and maintain resource reservations: *RSVP*
- Routing protocols that support QoS and multicast *Mrouted*, *ST2*+
- □ Transport protocols for error and flow control: *RTP*
- Access control: Connection admission based on usage, packet dropping
- Packet scheduler to provide QoS: Weighted Fair Queueing


The Ohio State University

# **Integrated Services**

- Datagram Service
- Controlled-Load Service: Performance as good as in an unloaded datagram network. No quantitative assurances.
- Guaranteed Service:
  - Firm bound on data throughput and delay.
  - Every element along the path must provide delay bound.
  - Is not always implementable, e.g., Ethernet.
- Delay jitter or average delay not guaranteed or minimized. The Ohio State University

# **Flow Specification**

- Flow Spec = Traffic Spec + QoS Spec = TSpec + RSpec
- TSpec: Peak rate (p), bucket rate (r), bucket size (b), max datagram size (M), min policed unit (m)
  - All datagrams less than m are counted as m bytes
  - Peak rate may be unknown or unspecified
- RSpec: Rate (R) and delay slack (S)
  S = Extra acceptable delay over that obtainable with R
  Zero slack ⇒ Reserve exactly R.
- RSpec specified only for guaranteed rate service.
  Not for controlled load service.

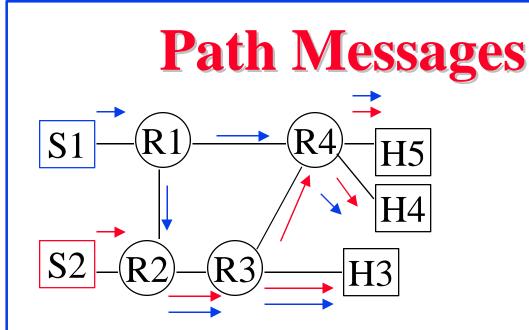


## IS Router Components (Cont)

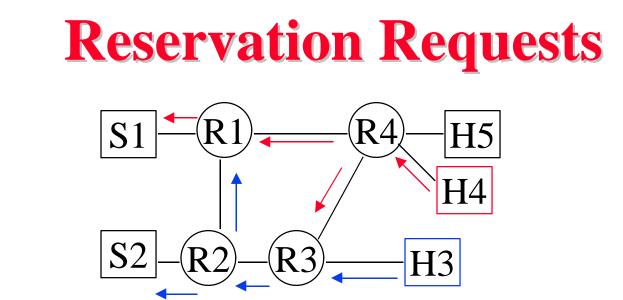
□ Packet Scheduler:

Manages queues and timers for different streams

**Classifier:** 


Each incoming packet is examined to determine its class

Packets in the same flow may have "preemptable" (CLP) attribute


- Admission Control: Determine whether a new flow can be granted without affecting existing flows
- □ Reservation Setup Protocol: RSVP

## RSVP

- □ Resource ReSerVation Protocol
- Internet signaling protocol
- Carries resource reservation requests through the network
- $\Box$  Receiver initiated reservations  $\Rightarrow$  Scales well
- □ Sets up reservations at each hop
- RSVP does not find routes.
  Multicast routing protocols do.
- RSVP does not do: Routing, Admission control, Packet scheduling



- Sources send quasi-periodic PATH messages to multicast address
- □ Path message contain "Flow spec":
  - Sender Template: Data format, Src Address, Src Port
  - TSpec: Traffic Characteristics



- Receivers must join multicast address to receive path messages
- □ Receivers generate reservation (RESV) requests
- □ RESV messages contain resources to be reserved
- RESV messages are forwarded along the reverse path of PATH messages

# **Reservation (Cont)**

- Requests are checked for resource availability (admission control) and administrative permissions (policy control)
- Two or more RESV messages for the same source over the same link are merged.
- Routers maintain a soft state.
  The receivers have to refresh periodically.
- Heterogeneous Receivers: Sources divide traffic into several flows. Each flow is a separate RSVP flow.
   Receivers join one or more flows. Each RSVP flow is homogeneous.

## **Reservation (Cont)**

- ResV messages contain Flow Spec + Filter Spec
- Filter Spec: Defines the packets in the flow Used in packet classifier
- Flow Spec: Used in packet scheduler
  Contents depends upon the service.
  Will generally include TSpec and RSpec.

## **RSVP Reservation Styles**

| Source    | Researvation Usage |                 |
|-----------|--------------------|-----------------|
| Selection | Separate           | Shared          |
| Wildcard  | N/A                | Wildcard Filter |
| Explicit  | Fixed Filter       | Shared-Explicit |

- □ Fixed Filter: One pipe per source
- □ Wildcard Filter: One pipe for all sources on a session
- Shared-Explicit: Sources explicitly identified (Reserve for sources S3 or S4)

# **RSVP: Status**

- Still an internet draft (May 1997)
  Submitted to IESG area director.
- □ Multivendor interoperability demo at Sep'95 Interop.
- □ Product announced by Cisco.
- □ Unresolved Issues:
  - Accounting and charging
  - Authentication and access control
  - Session groups

#### **RSVP vs UNI**

| Category       | IP/RSVP        | ATM UNI 3.0      |
|----------------|----------------|------------------|
| Orientation    | Receiver based | Sender based     |
| State          | Soft           | Hard             |
| QoS Setup      | Separate from  | Concurrent       |
| time           | route          | with route       |
|                | establishment  | establishment    |
| Directionality | Unidirectional | Unidirectional   |
|                |                | multicast        |
| Heterogeneity  | Receiver       | Uniform QoS      |
|                | heterogeneity  | to all receivers |

#### UNI 4.0 adds leaf initiated join.

The Ohio State University

## RTP

- □ Real-Time <u>Transport</u> Protocol
- Not really an L4 protocol.
  Common parts of several applications.
  Uses UDP for multiplexing and checksum.
- Supports unicast and multicast delivery
- □ Source and payload type identification
- □ Sequencing, Timing, and Synchronization
- Source merging: Multiple contributing sources for a combined stream produced by an RTP mixer.
  32-bit Synchronizing source (SSRC) id.

□ Stream translation: High-speed to low speed

# **RTP (Cont)**

- □ What RTP Does not Do?
  - Reliable data delivery
  - Quality of service guarantees
  - Resource reservations (RSVP)
  - Delivery of encryption key to participants
- □ RTP provides a general framework for applications to be able to do these ⇒ Application Level Framing
- □ Two components: RTP and Control (RTCP)  $\Rightarrow$  Simple RTP header
- □ Particular codings need additional parameters  $\Rightarrow$  RTP Profiles documents The Ohio State University

#### RTCP

- **Real-Time Transport Control Protocol**
- Convey information about participants
- Convey information about relationships among sessions
- ❑ Monitor application performance
  ⇒ Feedback on quality of data
- Automatically adjusts overhead
  (Report frequency based on participant count)

## **RTCP Packet Types**

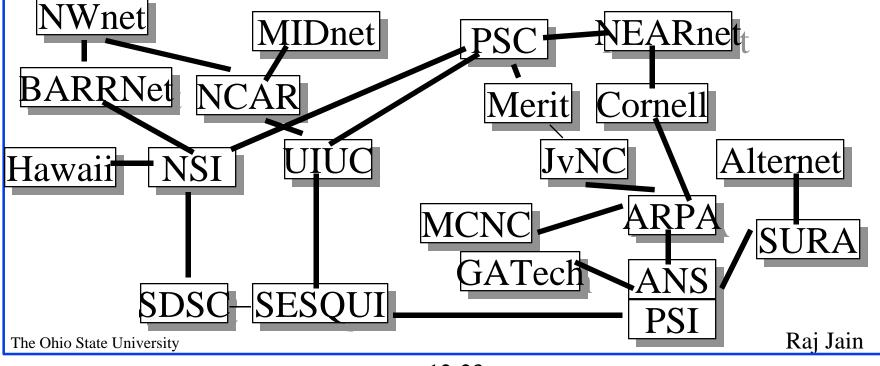
- Sender Report (SR): Packets/bytes sent, lost
- Receiver Report (RR): Packets/bytes received, lost, jitter
- □ Source Description (SDES)
- □ End of participation (BYE)
- □ Application Specific functions (APP)

## RTSP

- **Real time streaming protocol**
- Application level protocol similar to hyper-text transfer protocol (HTTP/1.1) for audio/video
- $\Box$  Maintains state  $\Rightarrow$  Setup/teardown messages
- □ RTSP messages use TCP, UDP, ...
- Data transfer is done separately using TCP, RTP/UDP, ...
- Uses URLs, e.g.,

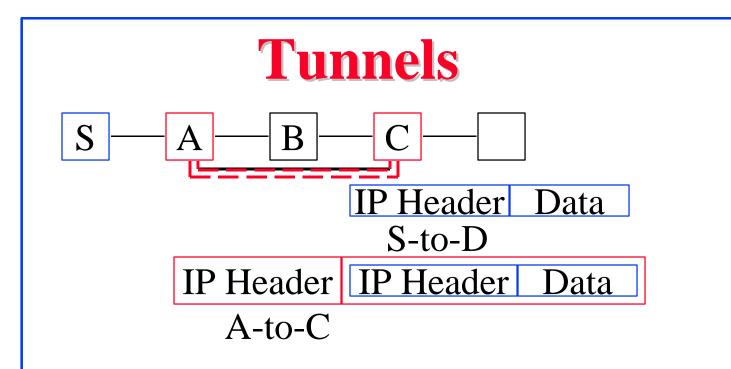
rtsp://media.example.com:554/twister/audiotrack

Both servers and clients can issue requests.
 HTTP servers do not issue requests.


The Ohio State University

## **RTSP Methods**

- □ Setup: Start a new session
- Teardown
- Redirect
- Play
- **Record**
- **D** Pause
- Describe: Tell me about session X
- □ Announce: A session X will take place at t
- Get\_parameter: Get server/client statistics
- □ Set\_parameter
- Options: I can accept only these options.


#### **MBone**

- Internet Multicast backbone
- □ Set of routers with IP multicasting
- IP multicast address: start with 1110... (binary), 224.0.0.0 to 239.255.255.255 (decimal)



# **MBone (Cont)**

- Uses radio/TV station paradigm: Sender is allocated a multicast address. It starts transmitting on that address
- Anyone can listen by tuning into the multicast address by sending an Internet Group Management Protocol (IGMP) request to router to join the multicast
- The router provides a connection to the nearest point
- First audiocast in March 1992: IETF meeting to 20 sites. Now over 600 hosts in over 15 countries
- Multicast routers setup tunnels between them. Tunnel = direct connection



- Implemented by encapsulating the entire packet in another IP header.
- Each tunnel has a cost. Least cost path is found by exchanging distance-vectors with neighbors.

#### **Internet Bandwidth Scarcity**

 Each tunnel requires 100 to 300 kbps. Use 500 kbps for design.
 A few tunnels can saturate the host.
 Four on SPARC 1, six on SPARC 10.
 Maximum two tunnels over T1.

- Each packet has a time to live (TTL).
  TTL is decremented at each router.
  The packet is forwarded iff its TTL is over a threshold.
- Pruning: If a multicast router gets a packet for which it has no listeners, it sends a message to the upstream multicast router to stop sending.

## **SDP**

- Session Description Protocol
- Used by session directory tool on MBone to announce sessions
- Currently SDP V2
- **Example:** 
  - s = Netlab Seminars
  - i = Seminars on recent advances in networking
  - o = maf@net.osu.edu

$$c = 224.5.17.11\ 127\ 2873397496\ 2873404696$$

- m = audio 3456 0
- m = video 2232 0

#### **ST2**+

- □ Stream protocol
- □ Connection oriented IP. IPv5
- Uses IP addressing, routing tables
- Source oriented: Sources setup real-time stream using a flow specification.
- Stream Message Control Protocol (SCMP)|
  Like ICMP. Used to setup/teardown flows.
  Connect, Accept, Disconnect, Refuse, Change, Join
- □ Single rate for all destinations.
- □ Implementations in DEC, NeXT, Mac, PC, SGI, Sun



- TCP/IP protocols suite is being extended to allow multimedia on Internet
- □ Signaling protocol: RSVP
- □ Transport Protocol: RTP, RTCP, RTSP
- □ IP Multicast backbone (MBone), SDP

Connection-oriented IP (ST2+)

#### References

- For a detailed list of references see: <u>http://www.cis.ohio-state.edu/~jain/</u> <u>refs/mul\_refs.htm</u>
- "Specification of Guaranteed Quality of Service", 7/7/1997,<u>http://www.internic.</u> <u>net/internet-drafts/draft-ietf-intserv-</u> <u>guaranteed-svc-08.txt</u>
- "Specification of the Controlled-Load Network Element Service", 5/29/1997, <u>http://www.internic.net/internet-drafts/draft-ietf-</u>

intserv-ctrl-load-svc-05.txt

# **References (Cont)**

- "Resource ReSerVation Protocol (RSVP)
  -- Version 1 Functional Specification",
  6/16/1997, <u>http://www.internic.net/internet-drafts/draft-ietf-rsvp-spec-16.txt</u>
- RFC 1889, RTP: A Transport Protocol for Real-Time Applications
- "Real Time Streaming Protocol (RTSP)", 08/02/1997, <u>http://www.internic.net/internet-drafts/draft-ietf-</u> <u>mmusic-rtsp-03.txt</u>

# **References (Cont)**

- The MBONE information web, <u>http://www.mbone.com/</u>
- RFC 1819, Internet Stream Protocol Version 2 (ST2)
  Protocol Specification Version ST2+
- SDP: Session Description Protocol, 3/26/97, <u>http://www.internic.net/</u> internet-drafts/draft-ietf-mmusic-sdp-03.txt

**IETF Multimedia Working Groups** 

- Audio/Video Transport (avt)
- □ Integrated Services (intserv)
- □ Integrated Services over Specific Link Layers (issll)
- □ Resource Reservation Setup Protocol (rsvp)
- □ MBONE deployment working group (mboned)
- □ Multiparty Multimedia Session Control (mmusic)
- □ Multicast Extensions to OSPF (mospf)
- Inter-Domain Multicast Routing (idmr)