

- **Why Multipoint**?
- Multipoint Routing Algorithms
- Multipoint Communication in IP networks
- Multipoint Communication in ATM Networks

Multipoint Communication

- □ Can be done at any layer
- Application Layer: Video Conferencing
- □ Transport Layer: ATM
- □ Network Layer: IP
- Datalink + Physical Layers: Ethernet

Multipoint Applications

- Audiovisual conferencing
- Distance Learning
- □ Video on Demand
- Tele-metering
- Distributed interactive games
- Data distribution (usenet, stock prices)
- Server synchronization (DNS/Routing updates)
- Advertising and locating servers
- □ Communicating to unknown/dynamic group

- Problems: *n* times more processing/buffering/bandwidth overhead
- Applications need lower layers' help in handling unknown addresses

Multipoint Routing Algorithms

- □ Flooding
- **Spanning Trees**
- Reverse Path Forwarding
- □ Flood and Prune
- **Steiner Trees**
- □ Center-Based Trees, e.g., core-based trees
- Most routing protocol standards are combination of these algorithms.

Flooding

- **Used in usenet news**
- □ Forward if first reception of this packet
 ⇒ Need to maintain a list of recently seen packets
- □ Sometimes the message has a trace of recent path

- Used by MAC bridges
- Packet is forwarded on all branches of the tree except the one it came on
- **Problem:**

All packets from all sources follow the same path \Rightarrow Congestion

- □ Also known as reverse path broadcasting (RPB)
- **Used initially in MBone**
- On receipt, note source S and interface I
- If "I" belongs to shortest path towards S, forward to all interfaces except I
- Otherwise drop the packet

- Optionally, check and forward only if the node is on the shortest path to the next node
- Implicit spanning tree. Different tree for different sources.
- □ Problem: Packets <u>flooded</u> to entire network

No listeners at E Listeners at E

- □ Also known as reverse path multicasting (RPM)
- Used in MBone since September 1993
- □ First packet is flooded
- □ All leaf routers will receive the first packet

- If no group member on the subnet, the router sends a "prune"
- □ If all branches pruned, the intermediate router sends a "prune"
- □ Periodically, source floods a packet
- □ Problem: Per group and per source state

- □ Aimed at multiple senders, multiple recipients
- □ Core-based tree (CBT) is the most popular example
- Choose a center
- Receivers send join messages to the center (routers remember the input interface)
- Senders send packets towards the center until they reach any router on the tree

The Ohio State University

Raj Jain

CBT (Cont)

- Possible to have multiple centers for fault tolerance
- □ Routers need to remember one interface per group (not per source) ⇒ More scalable than RPF
- Problem: Suboptimal for some sources and some receivers

Multipoint Routing Protocols

- □ Reverse Path Forwarding (RPF)
- Distance-vector multicast routing protocol (DVMRP): Flood and prune
- Multicast extensions to Open Shortest-Path First Protocol (MOSPF): Source-based trees (RPF)
- Protocol-Independent Multicast Dense mode (PIM-DM): Flood and prune
- Protocol-Independent Multicast Sparse mode (PIM-SM): Core-based trees

The Ohio State University

IP Multicast: Design Principles

- □ Single address per group
- Members located anywhere
- □ Members can join and leave at will
- ❑ Senders need not be aware of memberships Like a TV channel ⇒ Scalable
- □ Sender need not be a member
- $\Box \text{ Soft connections} \Rightarrow \text{periodic renewal}$

IP vs ATM

Category	IP/RSVP	ATM UNI 3.0
Orientation	Receiver based	Sender based
State	Soft	Hard
QoS Setup	Separate from	Concurrent
time	route	with route
	establishment	establishment
Directionality	Unidirectional	Unidirectional
		multicast
Heterogeneity	Receiver	Uniform QoS
	heterogeneity	to all receivers

UNI 4.0 adds leaf initiated join.

The Ohio State University

Raj Jain

Multiway Communication on ATM

- ATM Forum Multiway BOF formed in June 1996 after marketing studies indicated high user interest
- ITU Study group 13 on ATM based multiway communications technologies
- ITU Study group 11 on Signaling requirements for Capability Set 3 (Multimedia) specifies 4 types of multipoint connections.

Raj Jain

Multiway on ATM (Cont)

- **Type 1: point-to-point**
- □ Type 2: Point-to-multipoint
 - Unidirectional
 - Bi-directional with nonzero return bandwidth
- **Type 3: Multipoint-to-point**
- **Type 4: Multipoint-to-Multipoint**
- □ Variegated VCs
 - \Rightarrow Receivers with different bandwidth
 - Applications: Video distribution, stock market

- **□** Routing and packet multiplexing
- Packet multiplexing not allowed in AAL5
- □ AAL 3/4 has a 10-bit multiplexing ID in each cell payload \Rightarrow 1024 packets can be intermixed

Raj Jain

ATM Multiway Methods

- 1. LAN Emulation
 - \Rightarrow Broadcast and Unknown Server (BUS)
- 2. MPOA
 - \Rightarrow Multicast Address Resolution Server (MARS)
- 3. VC Mesh: Overlaid pt-mpt Connections
- 4. Multicast Server (MCS)
- 5. SEAM
- 6. SMART
- 7. VP Multicasting
- 8. Subchannel multicasting

The Ohio State University

IP Multicast over ATM

- Need to resolve IP multicast address to ATM address list
 - ⇒ Multicast Address Resolution Servers (MARS)
- Multicast group members send IGMP join/leave messages to MARS
- Hosts wishing to send a multicast send a resolution request to MARS

Overlaid pt-mpt Connections

- Also known as VC Mesh
- Each sender in the group establishes a pt-mpt connection with all members
- Problem: VC explosion, new members should be advertised and joined

The Ohio State University

Raj Jain

Multicast Server (MCS)

- All hosts send to MCS
 MCS has a single mpt VC to all members
- ❑ MCS serializes the packets ⇒ Does not intermingle cells of packets from different incoming VCs
- □ Problems with MCS:
 - Reflected packets
 - □ Single point of congestion
- □ Better for dynamic set of receivers

The Ohio State University

VC Merge

- □ Allows multipoint to point flow
- All cells of one source are switched until the last cell of the packet
- □ Cells from other sources on the same VC wait

- Scalable and Efficient ATM Multipoint-to-multipoint Communication
- Uses core-based tree
- At merging points, switches have to store all cells of a packet (reassembly is not required)

 \Rightarrow Packet switching (Authors call it "cut through")

Ref: M. Grossglauser and K.K. Ramakrishnan, ATM Forum/96-1142, August 1996.

The Ohio State University

SMART

- □ Shared Many-to-many ATM Reservations
- Needs only one VCC but allows using multiple VCCs for performance and reliability
- Limits to one transmitter at a time.
 Token holder (root) can transmit.
- Anyone wishing to transmit data, must request the token from current root and become new root.
- ❑ Ensures that there only one transmitter in the tree
 ⇒ No cell interleaving
- □ Ref: E. Gauthier, et al, IEEE JSAC, April 1997

SMART (Cont)

- Data blocks delineated by RM cells
- Not scalable for very large ATM networks or for small interactions

VP Multicasting

- □ A single VP is setup connecting all nodes
- Each source is given a unique VCI within the VP
- □ Problem: Size limited
- □ VPs are used by carriers for other purposes

Subchannel Multicasting

- Used in Washington University's Giga Switch
- Use GFC to provide 15 subchannels for each VC (FF indicates idle subchannel)
- Each burst is preceded and followed by "Start" and "End" RM cells.
- Subchannel is allocated on the first RM cell and released on the last.
- Subchannel IDs are changed at every switch (just like VC IDs)

- Allows multiplexing up to 15 simultaneous packets at each switch port per VC.
- □ If a Start RM cell is received and no subchannel is available, the burst is lost.
- \Box Jon Turner claims the loss probability is less than 10⁻¹²

- Multipoint communication is required for many applications and network operations
- □ Network and transport support
- Internet community has developed and experimented with many solutions for multipoint communication
- □ ATM solutions are being developed

The Ohio State University

Key References

- □ See <u>http://www.cis.ohio-state.edu/~jain/</u> <u>refs/mul_refs.htm</u> for further references.
- C. Huitema, "Routing in the Internet," Prentice-Hall, 1995
- T. Maufer and C. Semeria, "Introduction to IP Multicast Routing," March 1997, <u>http://www.internic.net/internet-drafts/draft-ietf-mboned-intro-multicast-02.txt</u>

References (Cont)

- S. Fahmy, et al, "Protocols and Open Issues in ATM Multipoint Communications," <u>http://www.cis.ohio-</u> <u>state.edu/~jain/papers/mcast.htm</u>
- C. Diot, et al, "Multipoint Communication: A Survey of Protocols, Functions, and Mechanisms," IEEE JSAC, April 1997, pp. 277-290.