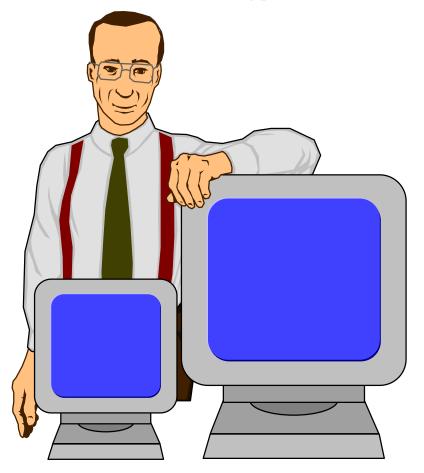
ATM

Traffic Management

Raj Jain
Professor of Computer and Info. Sciences


Raj Jain is now at Washington University in Saint Louis Jain@cse.wustl.edu

htt

http://www.cse.wustl.edu/~jain/

The Ohio State University

Dime Sale

One Megabit memory, One Megabyte disk, One Mbps link, One MIP processor, 10 cents each.....

- Why worry about congestion?
- Congestion schemes for ATM
- Explicit Rate-based Control
- □ ABR Traffic Management

The Ohio State University

Raj Jain

3

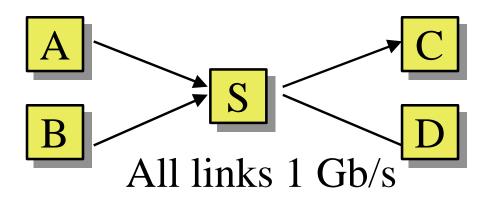
Future

Year

1980

In 1990, the memory will be so cheap that you will not have to worry about paging, swapping, virtual memory, memory hierarchy, and....

The Ohio State University

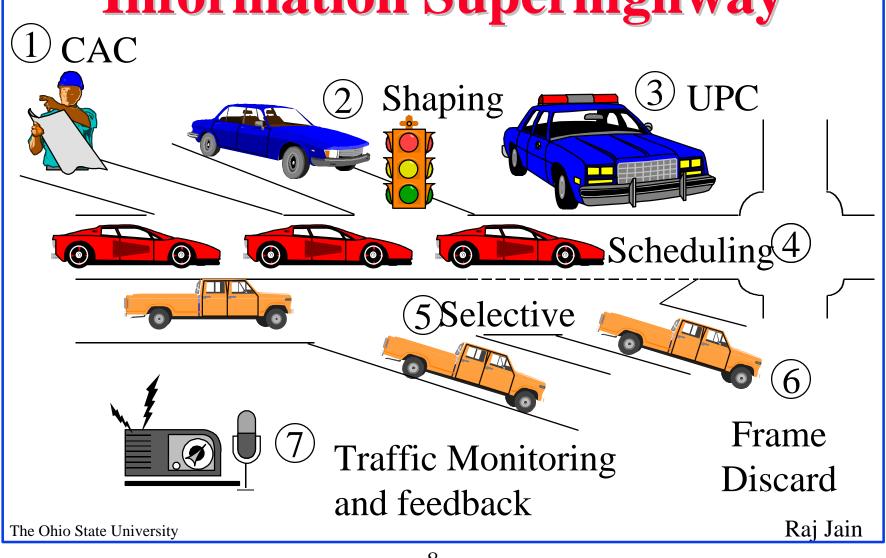

Why Worry About Congestion?

Q: Will the congestion problem be solved when:

- □ Memory becomes cheap (infinite memory)?
- □ Links become cheap (very high speed links)?
- Processors become cheap?

A: None of the above.

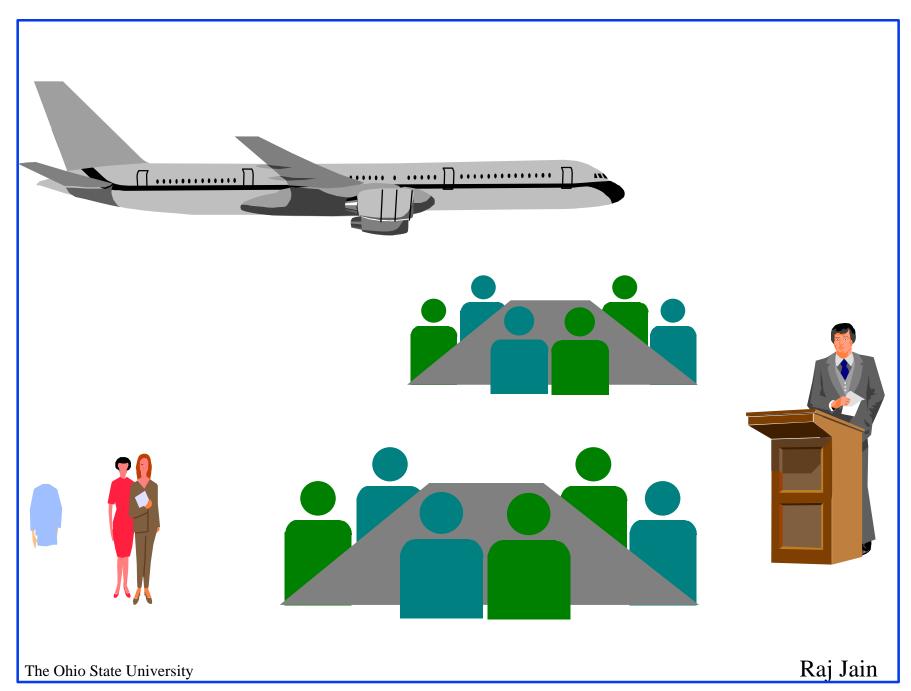
The Ohio State University


Conclusions:

- □ Congestion is a dynamic problem. Static solutions are not sufficient
- Bandwidth explosion
 - ⇒ More unbalanced networks
- □ Buffer shortage is a symptom not the cause.

Economic Reasons

- □ Network is a shared resource
 Because it is expensive and needed occasionally (Like airplanes, emergency rooms)
- □ Most costs are fixed.
 - Cost for fiber, switches, laying fiber and maintaining them does not depend upon usage
 - ⇒ Underutilization is expensive
- But overutilization leads to user dissatisfaction.
- □ Need a way to keep the network maximally utilized


Traffic Management on the Information Superhighway

Traffic Management Functions

- □ Connection Admission Control (CAC): Can requested bandwidth and quality of service be supported?
- □ Traffic Shaping: Limit burst length. Space-out cells.
- Usage Parameter Control (UPC):
 Monitor and control traffic at the network entrance.
- □ Network Resource Management: Scheduling,
 Queueing, virtual path resource reservation
- □ Selective cell discard:
 - Cell Loss Priority (CLP) = 1 cells may be dropped Cells of non-compliant connections may be dropped
- Frame Discarding
- Feedback Control

The Ohio State University

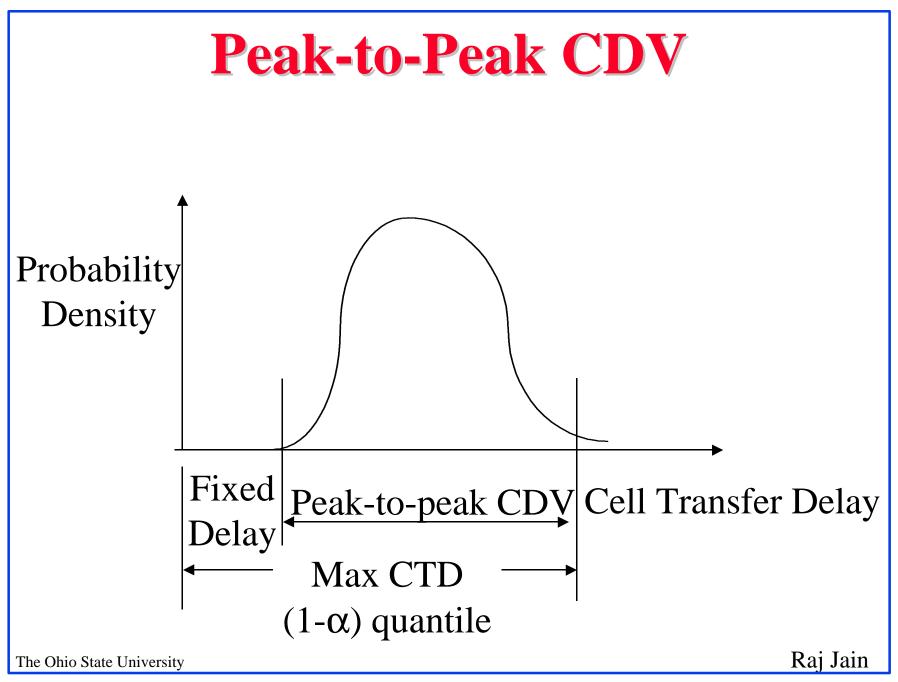
Service Categories

- □ ABR (Available bit rate):Source follows network feedback.Max throughput with minimum loss.
- □ UBR (Unspecified bit rate):
 User sends whenever it wants. No feedback. No guarantee. Cells may be dropped during congestion.
- □ CBR (Constant bit rate): User declares required rate. Throughput, delay and delay variation guaranteed.
- □ VBR (Variable bit rate): Declare avg and max rate.
 - ort-VBR (Real-time): Conferencing. Max delay guaranteed.
 - onrt-VBR (non-real time): Stored video.

Traffic Contract Parameters

- □ Peak Cell Rate (PCR): 1/T
- □ Cell Transfer Delay (CTD): First bit in to last bit out
- □ Cell Delay Variation (CDV): ~ Max CTD Min CTD
 - Peak-to-peak CDV
- Cell Delay Variation Tolerance (CDVT) τ
 - = GCRA limit parameter wrt PCR \Rightarrow GCRA(T, τ)

The Ohio State University Raj Jain


12

- Sustained Cell Rate (SCR): Average over a long period
- □ Burst Tolerance (BT) τ_s : GCRA limit parameter wrt SCR GCRA(1/ T_s , τ_s)

Maximum Burst Size:

MBS = [1+BT/(1/SCR-1/PCR)]
BT ∈ [(MBS-1)(1/SCR-1/PCR), MBS(1/SCR-1/PCR)]

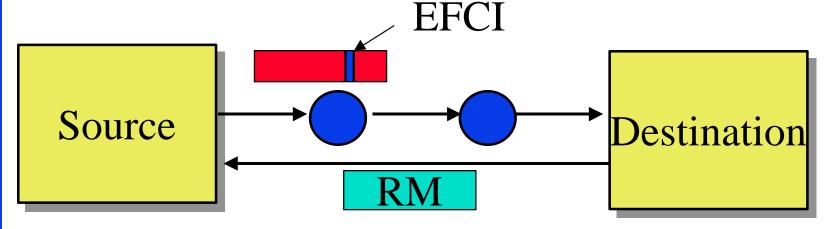
- □ Cell Loss Ratio (CLR): Cells lost /Totals cells sent
- Minimum cell rate (MCR)

Service Categories

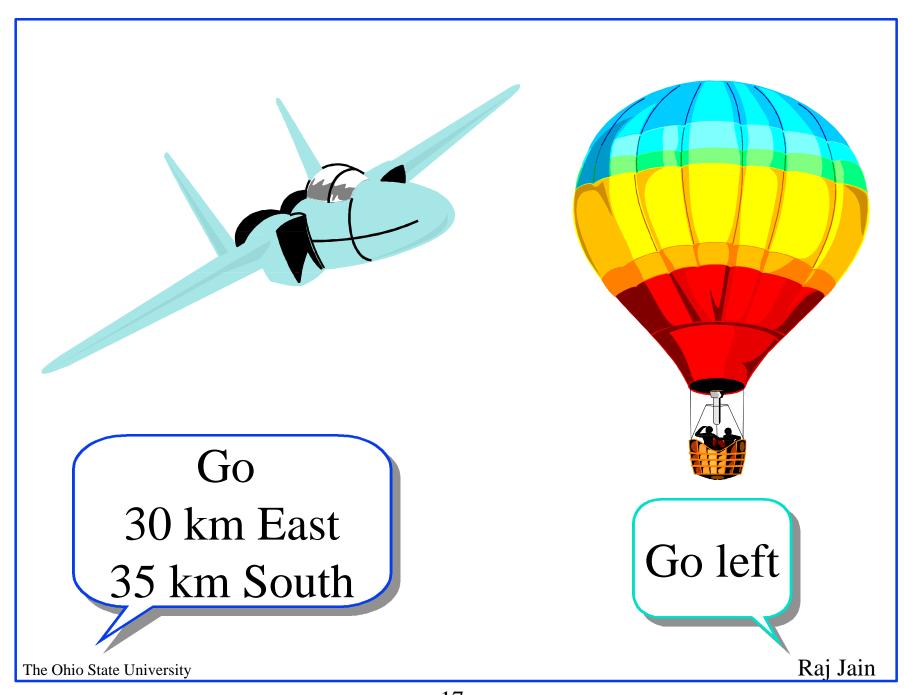
Attribute	CBR	rt-VBR	nrt-VBR	UBR	ABR
PCR, CDVT ^{4,5}	Specified	Specified	Specified	Specified ²	Specified ³
SCR,MBS, CDVT ^{4,5}	N/A	Specified	Specified	N/A	N/A
MCR^4	N/A	N/A	N/A	N/A	Specified
Peak-to-peak CDV	Specified	Specified	Unspecified	Unspecified	Unspecified
Max CTD	Specified	Specified	Unspecified	Unspecified	Unspecified
CLR^4	Specified	Specified	Specified	Unspecified	Specified ¹
Feedback	Unspecified	Unspecified	Unspecified	Unspecified	Specified ⁶

¹Network specific

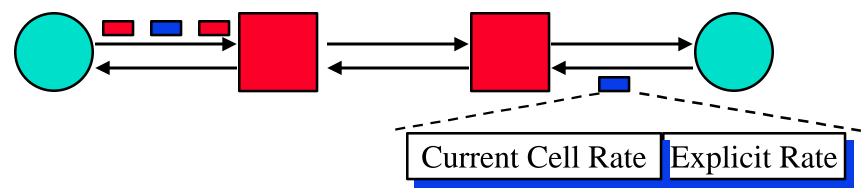
²Not subject to CAC/UPC

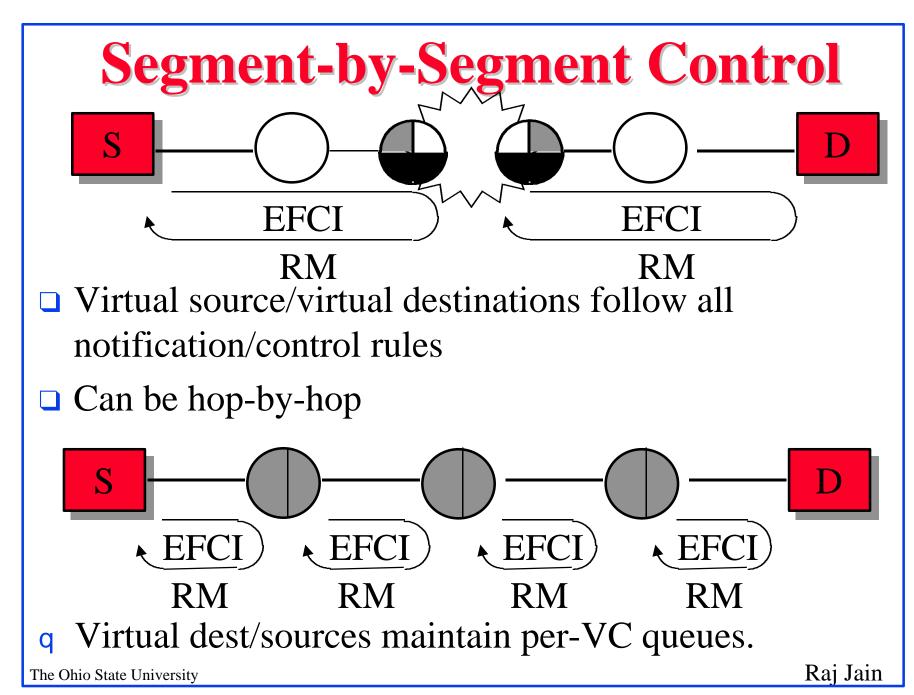

 $^{3}PCR \Rightarrow Max ACR$

⁴Explicitly/implicitly specified for PVC/SVC


⁵Not signaled. Different values may apply at different interfaces along the path.

⁶Follow ABR rules


ABR: Binary Rate Scheme


- □ DECbit scheme in many standards since 1986.
- □ Forward explicit congestion notification (FECN) in Frame relay
- Explicit forward congestion indicator (EFCI) set to 0 at source. Congested switches set EFCI to 1
- Every nth cell, destination sends an resource management (RM) cell to the source

ABR: The Explicit Rate Scheme

- □ Sources send one RM cell every n cells
- The RM cells contain "Explicit rate"
- Destination returns the RM cell to the source
- □ The switches adjust the rate down
- Source adjusts to the specified rate

Guaranteed Frame Rate (GFR)

- \square UBR with minimum cell rate (MCR) \Rightarrow UBR+
- ☐ Frame based service
 - Complete frames are accepted or discarded in the switch
 - Traffic shaping is frame based.
 All cells of the frame have the same cell loss priority (CLP)
 - All frames below MCR are given CLP =0 service.
 All frames above MCR are given best effort
 (CLP =1) service.

The Ohio State University

Congestion: Summary

□ Traffic Management is key to success of ATM

□ Several different methods: CAC, Shaping, UPC, Scheduling, ...

□ Service categories:CBR, VBR, ABR, UBR

■ ER switches provide much better performance than EFCI.

The Ohio State University

References

- Stallings' ISDN and BISDN book, Chapter 16
- R.Jain, "Congestion Control and Traffic Management in ATM Networks: Recent Advances and A Survey", Computer Networks and ISDN Systems, November 1996, http://www.cis.ohio-state.edu/~jain/
- K. Siu and R. Jain, "A Brief Overview of ATM: Protocol Layers, LAN Emulation, and Traffic Management," Computer Communications Review (ACM SIGCOMM), April 1995,

http://www.cis.ohio-state.edu/~jain/

References (Cont)

- □ User-Network Interface Specifications, V4.0, ftp://ftp.atmforum.com/pub/approved-specs/af-sig-0061.000.ps
- □ "ATM Forum Traffic Management Specification, Version 4.0," ftp://ftp.atmforum.com/pub/approved-specs/af-tm-0056.000.ps