

- □ What is Frame Relay?
- □ Why not leased lines or X.25?
- □ Frame formats and protocols
- **G** Signaling

Problems with Leased Lines

- \Box Multiple logical links \Rightarrow Multiple connections
- □ Four nodes ⇒ 12 ports,
 12 local exchange carrier (LEC) access lines,
 6 inter-exchange carrier (IXC) connections
- One more node ⇒ 8 more ports, 8 more LEC lines, 4 more IXC circuits

Raj Jain

Solution: X.25/Frame Relay

Four nodes: 4 ports, 4 LEC access lines,
 6 IXC circuits

One more node: 1 more port,
 1 more access line, 4 more IXC circuits

□ Share leased lines \Rightarrow Virtual Private Networks

- □ In-band signaling. VC setup and clearing messages in the same channel as data.
- □ Three layer protocol. Third layer for multiplexing.
- □ Flow control
- Error control
- \Rightarrow 12 messages for one packet transfer
- Only 6 messages without flow control and error control

Frame Relay: Key Features

- □ X.25 simplified
- □ No flow and error control
- Out-of-band signaling
- **Two layers**
- □ Protocol multiplexing in the second layer
- □ Congestion control added
 ⇒Higher speed possible.
 X.25 suitable to 200 kbps. Frame relay to 2.048 Mbps.

Relay vs Switching

- Switching = Relaying + Ack + Flow control + Error recovery + loss recovery
- $\Box Switching = X.25$
- □ Relay = Unreliable multiplexing service

Data Link Control Identifier

- Only local significance
- Allows multiple logical connections over one circuit
- Some ranges preassigned
- \Box DLCI = 0 is used for signaling

Frame Relay UNI Architecture

□ UNI = User-network Interface

- □ LAPF = Link Access Protocol Frame Mode Services
- □ LAPD = Link Access Protocol D Channel

Control Plane

- □ Signaling over D channel (D = Delta = Signaling)
- □ Data transfer over B, D, or H (B = Bearer)
- □ LAPD used for reliable signaling
- ISDN Signaling Q.933 + Q.931 used for signaling messages
- □ Service Access Point Identifier (SAPI) in LAPD = 0⇒ Q.933 + Q.931 Frame relay message

User Plane

- Link Access Procedure for Frame-Mode bearer services (LAPF)
- Q.922 = Enhanced LAPD (Q.921) = LAPD + Congestion
- □ LAPF defined in Q.922
- □ Core functions defined in Q.922 appendix:
 - Frame delimiting, alignment, and flag transparency
 - Virtual circuit multiplexing and demultiplexing
 - Octet alignment ⇒ Integer number of octets before zero-bit insertion

• Checking min and max frame sizes

The Ohio State University

Raj Jain

User Plane (Cont)

- Error detection, Sequence and non-duplication
- Congestion control
- □ LAPF control may be used for end-to-end signaling

LAPF-Core Frame Format

- □ LAPF is similar to LAPD: Flag, bit stuffing, FCS
- □ No control frames in LAPF-Core \Rightarrow No control field
- No inband signaling
- No flow control, no error control, no sequence numbers
- Logical Link Control (LLC) may be used on the top of LAPF core

Flag 01111110	Address	Information	FCS	Flag 01111110
1B	2-4B		2B	2B
The Ohio State University				Raj Jain

]	LA]	PF	Ad	dre	ss]	Fiel	d	
_	8	7	6	5	4	3	2	1
2 Octet:	Upper DLCI Lower DLCI FECNBECN						C/R	EA 0
							DE	EA 1
3 Octet:	Upper DLCI						C/R	EA 0
		DLCI FECNBECN						EA 0
	Lower DLCI or DL-Core control						D/C	EA 1
4 Octet:	Upper DLCI					C/R	EA 0	
		DI	LCI		FECN	BECN	DE	EA 0
	DLCI						EA 0	
	Lower DLCI or DL-Core control					D/C	EA 1	
he Ohio State University								Rai

LAPF Address Field

- \Box Address length = 2, 3, or 4 bytes
- Data Link Control Identifier (DLCI) = 10, 16, 17, or 23 bits
- □ Address Extension (EA) bits: $0 \Rightarrow$ More bytes
- D/C = Remaining bits for DLCI or for core control protocol (No use for core control has been defined)
- \Box C/R = Command/response (not used)
- □ FECN = Forward Explicit Congestion Indication
- □ BECN = Backward Explicit Congestion Indication

Local Management Interface (LMI)

- □ Extension designed by a group of vendors
- To overcome problems observed in early implementations
- □ May be standardized by both ANSI and ITU-T
- □ Status Enquiry (SE) message from user to network
- □ Status (S) message from network to user
- Uses HDLC UI frames (with sequence numbers)
- Uses protocol ID=00001001, DLCI=1023

The Ohio State University

DLCI Extensions

Global DLCI

 \Rightarrow DLCI points to the same destination at all time and points

(OK for small networks)

Multicasting

• One-way multicasting: 1 to N

• Two-way multicasting: 1 to N and N to 1

• N-way Multicasting: N to N

Network-to-Network Interface (NNI)

- Developed by frame relay forum: FRF 92.08R1, FRF 92.62
- □ Working draft of ANSI T1S1.2
- Adding/deleting PVCs between networks
- Diagnosing PVC failures

Major NNI Operations

- □ Notification of adding a PVC
- □ Notification of deleting a PVC
- Notification of UNI or NNI failures
- Notification of a PVC segment availability or unavailability
- Verification of links between frame relay nodes
- Verification of frame relay nodes

Summary

- □ X.25 designed for unintelligent devices over error-prone networks \Rightarrow Slow
- □ Frame relay = Simplified X.25
- □ Higher data rates than X.25
- Developed for ISDN but runs in non-ISDN environments
- □ Two layer protocol architecture

Homework

 Read Chapter 4 of Black's "Emerging Communications Technologies." Can skip sections on congestion control.

Additional References

- Chapter 11 of Stallings' "ISDN and Broadband ISDN with Frame Relay and ATM"
- P. Smith, "Frame Relay: Principles and Applications," Addison-Wesley, 1993.
- U. Black, "Frame Relay Networks," 2nd Ed., McGraw-Hill, 1995
- C. A. Heckart, "The Guide to Frame Relay Networking," Flatiron Publishing, 1994