Fundamentals of Telecommunications

Raj Jain

Raj Jain is now at Washington University in Saint Louis Jain@cse.wustl.edu

http://www.cse.wustl.edu/~jain/

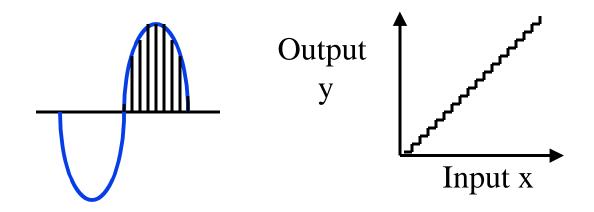
- Single phone conversation: μ-Law and A-Law
- □ Multiplexing: T1 Framing, Signaling, Frame Formats
- Digital TDM Hierarchy
- Echo Cancellation
- □ Signaling: Functions, modes

The Ohio State University Raj Jain

2

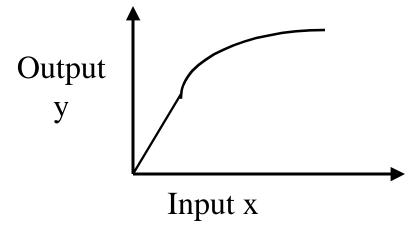
Summary Slide (cont.)

Homework


Time Division Multiplexing

- □ Voice signal has a bandwidth of 4 kHz(300 Hz to 3300 Hz is transmitted on phone systems)
- Nyquist sampling theorem:
 Sample at twice the highest signal frequency
 ⇒ Sample at 8 kHz ⇒ Sample every 125 μsec
- □ 256 levels ⇒ 8 bits per sample × 8000 samples/sec
 = 64 kbps

The Ohio State University Raj Jain


4

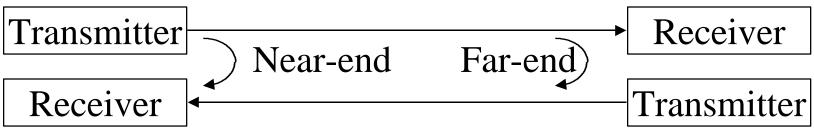
PCM and Companding

- Analog voice to Digital Signal
 - ⇒ Pulse code modulation (PCM)
- Difference between actual and transmitted level
 - ⇒ Quantizing noise. More perceptible at low levels.
 - ⇒ Expand the number of levels at low amplitudes Compress at high amplitudes = Companding

μ-Law and A-Law

□ In North America: μ-Law

$$y = \ln (1+\mu x)/\ln(1+\mu), \mu = 255$$

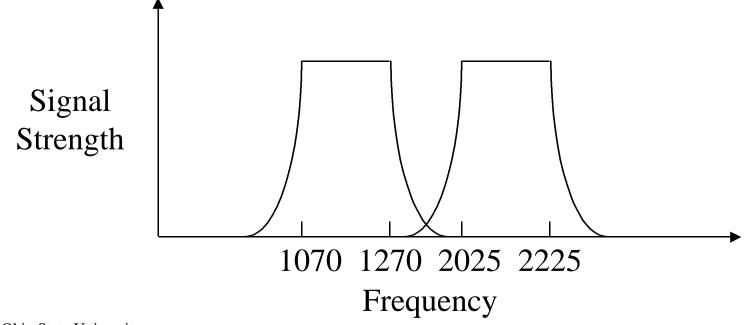

■ In Europe: A-Law

$$y = (1 + \ln Ax)/(1 + \ln A), A = 87.6$$

□ Linear for small values of x (x \leq 1/ μ or x \leq 1/A) and logarithmic for larger values.

Echo Cancellation

- Problem: Full duplex transmission over a single pair
- Solution 1: FDM for the two directions.
 - ⇒ Only half of the bandwidth for each direction
- q Solution 2: Use digital signal \Rightarrow Some part of the signal returns (echo). Near-end and far-end echoes

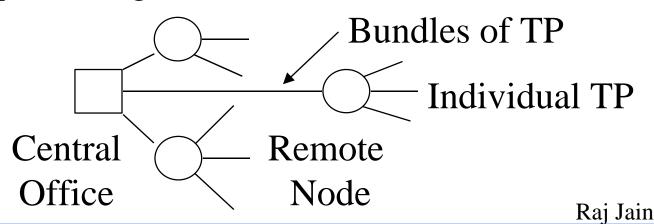


Echo Cancellation: Reflections from various distances along the path are estimated and subtracted from the received signal \Rightarrow 144 kbps up to 4 km

The Ohio State University

300 bps over Single Pair

- → 300 bps modems (Bell 108 specification)
- Use frequency shift keying
 - $0 \Rightarrow 1070 \text{ Hz}, 1 \Rightarrow 1270 \text{ Hz}$ in one direction
 - $0 \Rightarrow 2025 \text{ Hz}, 1 \Rightarrow 2225 \text{ Hz}$ in the other direction



The Ohio State University

Raj Jain

Local Loop

- Distribution network uses a star topology
 - ⇒ Hierarchical System: Subscribers are connected to local exchanges (or end offices), which are connected via trunks to other tandem or toll switching centers.
- Feeder cables connect central office to remote nodes. Can be replaced via fiber. May multiplex using TDM or WDM

The Ohio State University

Multiplexing

- Multiple conversations ⇒ Multiple frequency bands
 Frequency division multiplexing (FDM)
 Useful for analog signals.
- □ In 1962, telephone carrier cable between Bell System offices could carry approx 1.5 Mbps over a mile
 - = Distance between manholes in large cities
 - = Distance between amplifiers
- □ $1500/64 \approx 24 \Rightarrow$ Can multiplex approx.
 - 24 voice channels on that carrier
 - ⇒ Telecommunication-1 carrier or T1 carrier.

Named after the ANSI committee.

T1 Frame

- □ T1= 24 voice channels = Digital Service 1 = DS1
- Used time-division multiplexing:

Framing bit

1 2 3

23 24

T1 Frame = 193 bits/125 μ s

q Simple Framing: Add 101010 (1 bit per frame)

Frame 1 Frame 0 Frame 1 Frame 0 Frame 1

q Any other sequence ⇒ Resynchronize

T1 Signaling

- On-hook/off-hook or destination address = Signaling
- ☐ Initially, manual through operators Later through switches
- □ In T1-frames, initially, the 8th bit of every 6th frame in each channel was used for signaling
- □ 8th bit is not reliable
 - \Rightarrow Use only 7 bits per frame \Rightarrow 56 kbps
- □ In the newer PRI (primary rate interface) format used with ISDN, the signaling information of 23 channels is combined into a separate 24th channel.

Each user gets full 64 kbps.

The Ohio State University

D4 and **ESF** Frame Formats

Frame #	193 rd bit	Use	193rdbit	Use	← Superframe ← →											
$\frac{1}{2}$	1	FT	X	FDL	1	2	2	4	5	C *	7	0	0	10	11	12*
$\frac{2}{2}$	0	FS FT	X X	CRC	1	2	3	4	3	6*	/	8	9	10	11	12*
3	0	FS	A 0	FDL FS	193 bits											
4 5	0	FS FT	X	FDL												
6	1	FS	X	CRC												
7	0	FT	X	FDL												
8	1	FS	0	FS	ESF format extended superframe = 24 Frames											
9	1	FT	X	FDL												
10	1	FS	X	CRC												
11	0	FT	X	1 11)1.												
12	0	FS	1	FS												
13			X	FDL	FDL = Datalink bit (M bit) CRC = Cyclic Redundancy Check bit X = Data dependent											
14			X	CRC												
15			X	FDL												
16			0	FS												
17			X	FDL												
18			X	CRC												
19			X	FDL												
20			1	FS												
21			X	FDL												
22			X	CRC												
23			X	FDL												
24			1	FS												
The Ohio State	University				•									R	Raj J	ain

Subrate Multiplexing

- □ Used for data rates lower than 56 kbps.
- One bit of the 7 bits is used to indicate data rate
- □ 6 bits per channel = 48 kbps
 - Five 9.6 kbps subchannels
 - Ten 4.8 kbps subchannels
 - Twenty 2.4 kbps subchannels
- □ Five subchannels ⇒ Subchannel 1 uses frames 1, 6,11, ...

European System: E1

- European counter part of American T1
- Designed by Conference of Post and Telecommunications (CEPT)
- 32 bytes per 125 μs frame = 2.048 kb/s
 30 channels are used for data
 One channel for synchronization
 One channel for signalling

Digital TDM Hierarchy

	North America		Europe	Japan			
DS0	64 kbps		64 kbps		64 kbps		
DS1	1.544 Mbps	E1	2.048 Mbps	J1	1.544 Mbps		
DS2	6.313 Mbps	E2	8.448 Mbps	J2	6.312 Mbps		
DS3	44.736 Mbps	E3	34.368 Mbps	J3	32.064 Mbps		
DS4	274.176 Mbps	E4	139.264 Mbps	J4	97.728 Mbps		
DS1C	3.152 Mbps	E5	565.148 Mbps	J5	397.200 Mbps		

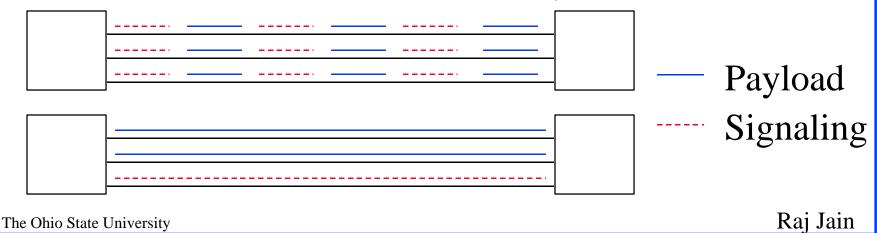
Signaling

- □ Signal = Control
- Signaling in telephone networks
 - = Control messages in computer networks
- □ Examples:
 - Connection setup request
 - = Off-hook signal from telephone to switch
 - Connection setup acknowledge = Dial tone
 - Destination address = Pulse or tone dialing
 - Destination busy = Busy tone
 - Destination Available = Ringing tone

Other Signaling Functions

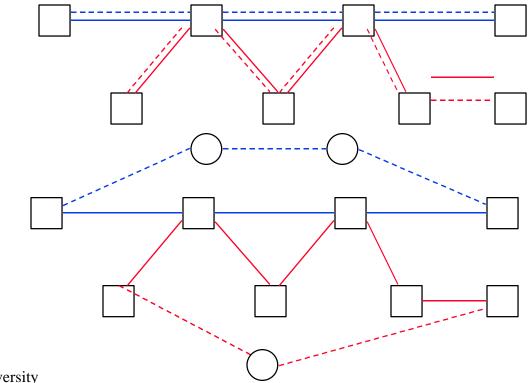
- Transmission of dialed number between switches
- Transmission of information between switches indicating that a call cannot be completed
- Transmission of billing information
- Transmission of information for diagnosing and isolating failures
- Control of satellite channels

Types of Signaling Fns


- **Supervisory**: To obtain resources to establish/hold/release a connection.
- **Address**: Identify destination. Subscriber to switch. Between switches.
- □ **Call information**: Provide call status to the calling subscriber
- **Network Management**: Operation, troubleshooting, and maintenance of the network. Not directly involved in call establishment/termination.
- □ Signaling between a subscriber and the network is different (simple) from that inside the network.

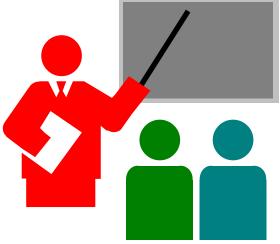
The Ohio State University

Raj Jain


Signaling Channel

- □ In-band signaling \Rightarrow Signaling over the same channel as payload
- Out-of-band signaling ⇒ Separate channels for signaling (but may be same physical circuits)
- Common Channel Signaling (CCS)
 - ⇒ Separate circuits for signaling
 - ⇒ Allows several new functions, such as 800

Signaling Modes


- Associated Mode: CCS follows the same path as payload
- □ Nonassociated Mode: CCS uses a separate network

The Ohio State University

Raj Jain

Summary

- □ T1, DS1, DS3, ...
- \square T1 Frames consist of 193 bits per 125 μ s.
- □ Echo cancellation is required if sharing the same wirepair for both directions.
- □ Signaling: In band vs Common Channel, associated vs non-associated..

Homework

- □ Read Chapter 2 and 3 of Black's book
- Submit answer to the following:
 What is the percentage of overhead in DS-1
 transmission format (percentage of bits that are not user data)?
- Due Date: April 8, 1999

The Ohio State University

Raj Jain

23