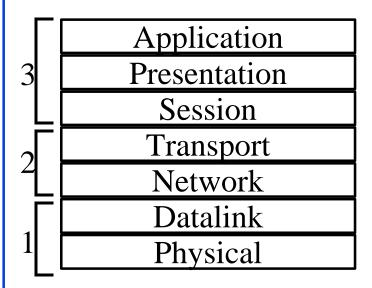
A Review of Key Networking Concepts

Raj Jain

Raj Jain is now at Washington University in Saint Louis Jain@cse.wustl.edu

http://www.cse.wustl.edu/~jain/

The Ohio State University



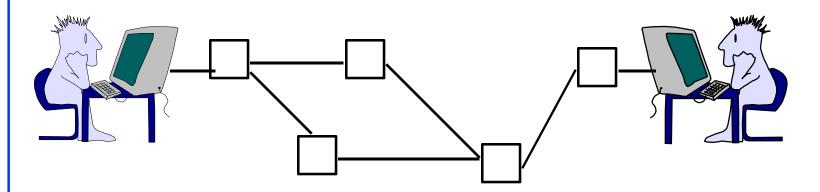
- □ ISO/OSI Reference Model
- □ Ethernet/IEEE 802.3 LANs
- □ Interconnecting Devices
 All these concepts are taught in CIS677.

The Ohio State University

Raj Jain

ISO/OSI Reference Model

File transfer, Email, Remote Login ASCII Text, Sound


Establish/manage connection

End-to-end communication: TCP

Routing, Addressing: IP

Two party communication: Ethernet

How to transmit signal: Coding

The Ohio State University

TCP/IP Reference Model

- □ TCP = Transport Control Protocol
- □ IP = Internet Protocol (Routing)
 TCP/IP Ref Model TCP/IP Protocols

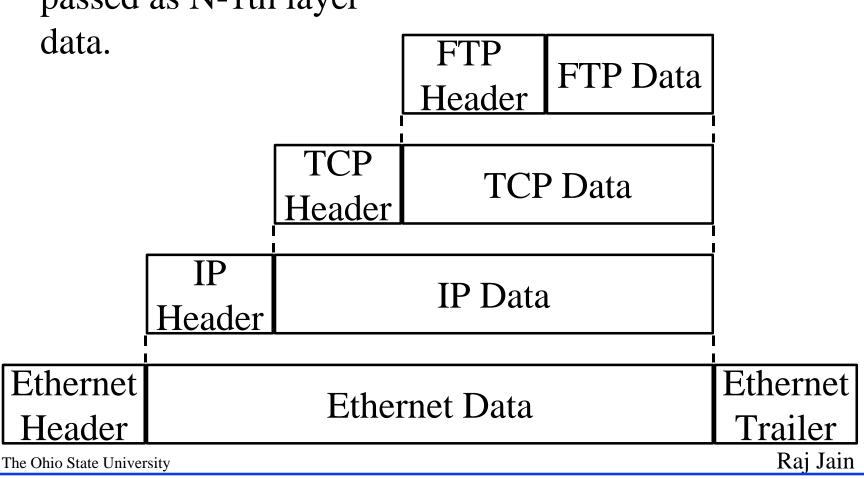
OSI Ref Model

СТО		Tala	. 4	t HTTP		Application
FTP		Teine		пПР		Presentation
Т	TCD			HDD		Session
TCP		UDP			Transport	
	IP					Network
Ether		acket	Point-to-		Datalink	
net		Radio		Point		Physical
Dai Iain						

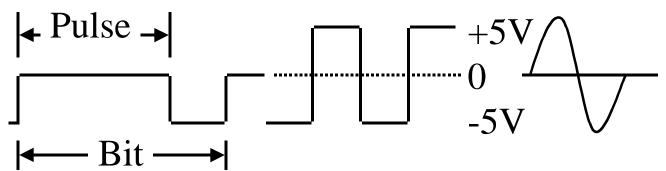
Network

The Ohio State University

Application


Transport

Internetwork


Host to

Layered Packet Format

□ Nth layer control info is passed as N-1th layer

Coding Terminology

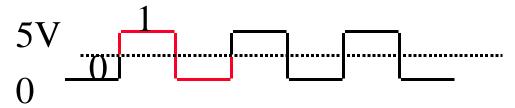
- □ Signal element: Pulse
- Modulation Rate: 1/Duration of the smallest element
 =Baud rate
- Data Rate: Bits per second
- Data Rate = Fn(Bandwidth, signal/noise ratio, encoding)

The Ohio State University Raj Jain

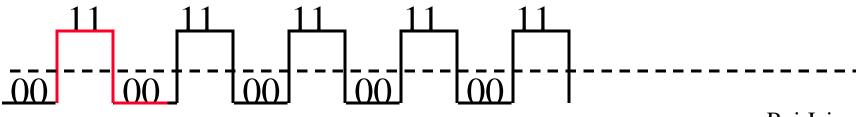
Channel Capacity

- □ Capacity = Maximum data rate for a channel
- **Nyquist Theorem:**
- \Box Bilevel Encoding: Data rate = $2 \times Bandwidth$

q Multilevel coding: Data rate = $2 \times \text{Bandwidth} \times \log_2 M$

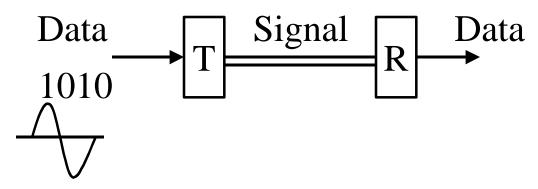


Example: M=4, Capacity = $4 \times B$ and width


The Ohio State University

Channel Capacity (Cont)

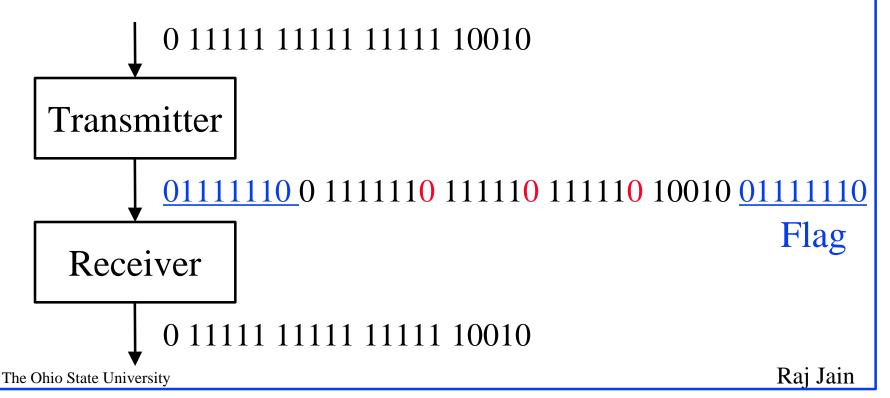
- □ Bilevel Encoding: Worst case: 1010101010
 - Cycle time = $2 \times Bit time$
 - \Rightarrow Data rate = 2 × Bandwidth



- q Multilevel coding: Worst case 001100110011
 - Cycle time = $4 \times Bit time$
 - \Rightarrow Data rate = 2 × Bandwidth × log₂ M

The Ohio State University

Data vs Signal


- □ Data: Analog (Music), Digital (files)
- Signal: Analog (POTS, Radio), Digital (ISDN)

Data	Signal		Examples
Analog	Analog	Modulation	AM, FM
Digital	Analog	Coding/Keying	ASK, FSK, PSK
Analog	Digital	Modulation	PCM, ADPCM
Digital	Digital	Coding	Manchester, NRZ

The Ohio State University

Bit Stuffing

- Delimit with special bit pattern (bit flags)
- □ Stuff bits if pattern appears in data
- Remove stuffed bits at destination

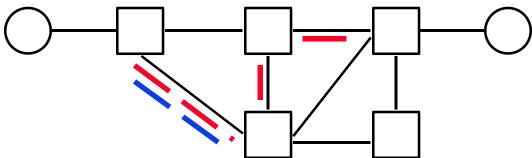
Flow Control

- □ Flow Control = Sender does not flood the receiver, but maximizes throughput
- Sender throttled until receiver grants permission
- Methods:
 - Stop and wait
 - Sliding window

The Ohio State University

Raj Jain

Error Control


- □ Error Control = Deliver frames without error, in the proper order to network layer
- Error control Mechanisms:
 - Ack/Nak: Provide sender some feedback about other end
 - Time-out: for the case when entire packet or ack is lost
 - Sequence numbers: to distinguish retransmissions from originals
- □ ARQ: Stop and Wait, Selective Reject, Go-back n

The Ohio State University

Raj Jain

Connection-Oriented vs

Connectionless

- □ Connection-Oriented: Telephone System
 - Path setup before data is sent
 - Data need not have address. Circuit number is sufficient.
- □ Connectionless: Postal System.
 - Complete address on each packet
 - The address decides the next hop at each router

The Ohio State University

Multiple Access Protocols

(a) Multiple Access

(b) Carrier-Sense Multiple Access with Collision Detection

The Ohio State University

Raj Jain

Multiple Access Protocols

- □ Aloha at University of Hawaii:
 Transmit whenever you like
 Worst case utilization = 1/(2e) = 18%
- □ CSMA: Carrier Sense Multiple Access Listen before you transmit
- CSMA/CD: CSMA with Collision Detection Listen while transmitting.
 Stop if you hear someone else.
- Ethernet uses CSMA/CD.

 Standardized by IEEE 802.3 committee.

The Ohio State University

Raj Jain

Interconnection Devices

- **Repeater**: PHY device that restores data and collision signals
- Hub: Multiport repeater + fault detection and recovery
- **Bridge:** Datalink layer device connecting two or more collision domains. MAC multicasts are propagated throughout "extended LAN."
- Router: Network layer device. IP, IPX, AppleTalk. Does not propagate MAC multicasts.
- □ **Switch**: Multiport bridge with parallel paths

These are functions. Packaging varies.

The Ohio State University

Interconnection Devices LAN= B Collision Router Domain Extended LAN =Broadcast domain **Application Application** Gateway Transport Transport Network Network Router Datalink Datalink Bridge/Switch Physical Physical Repeater/Hub Raj Jain The Ohio State University

IEEE 802 Address Format

q 48-bit:1000 0000 : 0000 0001 : 0100 0011

: 0000 0000 : 1000 0000 : 0000 1100

= 80:01:43:00:80:0C

Orga	anizationally		
	Identifier (C	24 bits assigned by	
Individual/	Universal/		OUI Owner
Group	Local		

1 1 22 24

- ☐ Multicast = "To all bridges on this LAN"
- Broadcast = "To all stations"

= 1111111....111 = FF:FF:FF:FF:FF

The Ohio State University

Summary

- □ ISO/OSI reference model has seven layers. TCP/IP Protocol suite has four layers.
- □ Ethernet/IEEE 802.3 uses CSMA/CD.
- □ Addresses: Local vs Global, Unicast vs Broadcast.

The Ohio State University

Raj Jain

Homework

□ For each of the following addresses: indicate whether it is a multicast and whether it is a locally assigned address?

80:02:45:00:00:00

40:02:45:00:00:01

Were these addresses assigned by the same manufacturer?

The Ohio State University Raj Jain