X.25

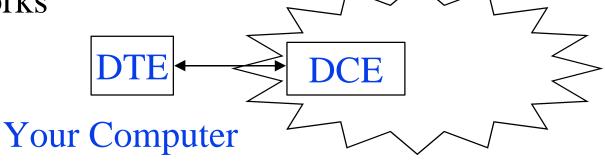
Raj Jain Professor of CIS

Raj Jain is now at Washington University in Saint Louis Jain@cse.wustl.edu

http://www.cse.wustl.edu/~jain/

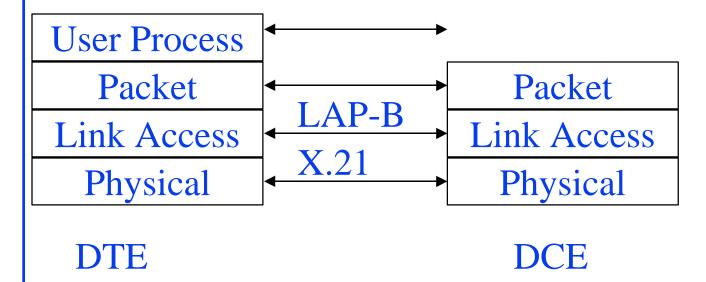
The Ohio State University

- Protocol layers
- Packet types and format
- □ Virtual call
- Multiplexing
- □ Flow, error control, segmentation, and reassembly


The Ohio State University

Raj Jain

2


X.25

- □ First packet switching interface.
- Issued in 1976 and revised in 1980, 1984, 1988, and 1992.
- □ Data Terminal Equipment (DTE) to Data
 Communication Equipment (DCE) interface ⇒ User to network interface (UNI)
- □ Used universally for interfacing to packet switched networks

The Ohio State University

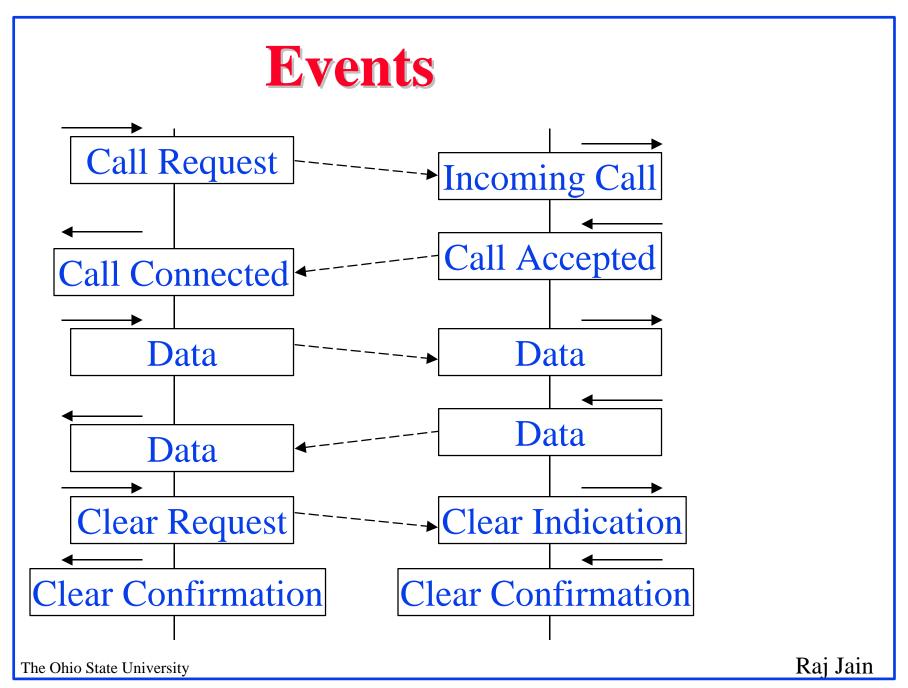
X.25 Protocol Layers

- □ X.21 often replaced by EIA-232 (RS-232C)
- □ LAP-B = Link access procedure Balanced
- □ Packet layer = Connection-oriented transport over virtual circuits

The Ohio State University Raj Jain

Virtual circuit service

- Virtual call
 - = Switched virtual circuit (SVC)
- Permanent virtual circuit (PVC)
- □ X.25 Packets
- Data is broken into blocks
- □ 3- or 4-byte header

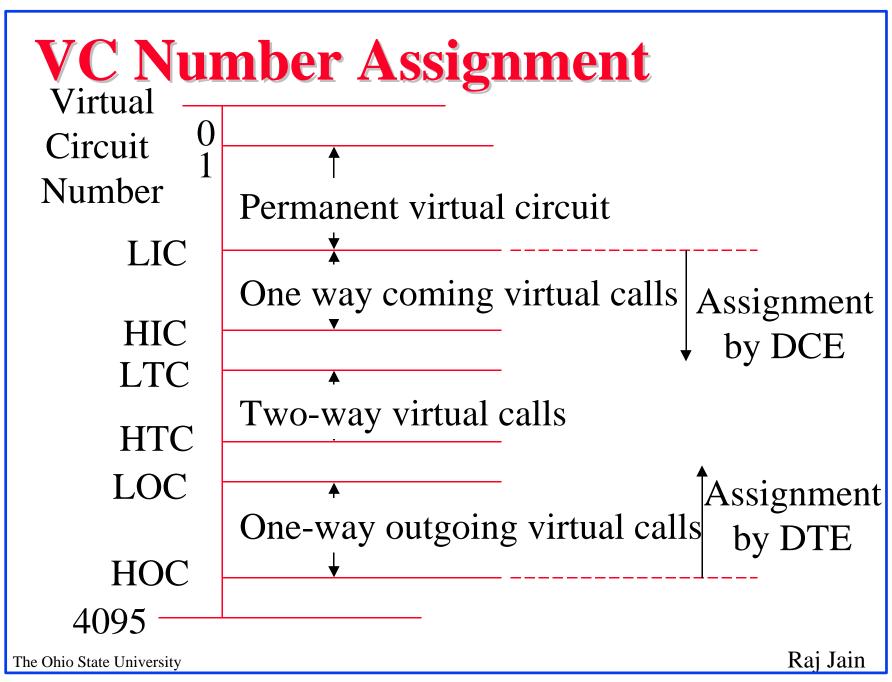

Data

X.25 Level 3 Header

LAP-B Header

LAP-B Trailer

The Ohio State University

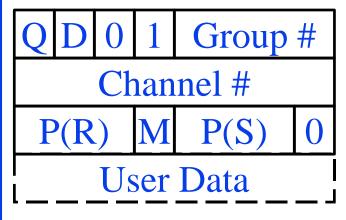


Multiplexing

- Allows up to 4095 simultaneous VCs over one physical DTE-DCE link
- □ All VCs are full-duplex (bi-directional)
- Each packet contains a 12-bit VC number
 - = 4-bit group + 8-bit channel

The Ohio State University Raj Jain

7



VC Assignment (Cont)

- □ Lowest incoming channel (LIC)
- □ Highest incoming channel (HIC)
- Lowest two way channel (LTC)
- ☐ Highest two way channel (HTC)
- Lowest outgoing channel (LOC)
- □ Highest outgoing channel (HOC)
- Virtual Circuit Number
 - = Logical Group # and Logical Channel #

The Ohio State University Raj Jain

Packet Format

Q D 1	0	Group	#	
Channel #				
P(S)			0	
P(R)			M	
User Data				

Data w 3-bit Seq # Data w 7-bit Seq #

- q Q bit not defined. Allows users to have two classes of packets.
- q M and D bits used for segmentation and acknowledgment

The Ohio State University

Raj Jain

Packet Format (Contd)

 0
 0
 0
 1
 Group #
 0
 0
 1
 0
 Group #

 Channel #

 Packet Type
 1
 Packet Type
 1

 Additional Info

 Additional Info

 Control w 3-bit Seq #
 Control w 7-bit Seq #

 0
 0
 1
 Group #

 Channel #

 P(R)
 Pkt Type 1

 $\begin{array}{c|cccc} 0 & 0 & 1 & 0 & Group \# \\ \hline & & Chan el \# \\ \hline & & Pkt Type & 1 \\ \hline & & P(R) & 0 \\ \end{array}$

RR, RNR, and REJ packets with 3-bit seq #

RR, RNR, and REJ packets with 7-bit seq #

The Ohio State University

Flow and Error Control

- □ Link Access Protocol Balanced (LAPB)
- \square Balanced \Rightarrow Both stations combined
- □ 3- or 7-bit sequence numbers
- □ 3-4th bits of X.25 header =
 - $01 \Rightarrow 3$ -bit sequence number
 - $10 \Rightarrow 7$ -bit sequence number
- □ Each VC has separate sequence number
- □ D=0 packets are acked by local DCE
- □ D=1 packets are acked by remote DTE (end-to-end ack)

The Ohio State University Raj Jain

Segmentation and Ack

- X.25 allows segmenting large packets into smaller packets inside the network
- □ A Packet: First and intermediate blocks
- □ B Packet: Last block
- \square M = 1 \Rightarrow Additional segments to follow
- □ D = 1 ⇒ end-to-end acknowledgment required from receiving DTE to sending DTE
- \square M = 1 and D = 0 \Rightarrow A packet
- \square All others \Rightarrow B packet
- □ Segments can be further segmented or combined inside the network

The Ohio State University

X.25 Packet Sequences

EXAMPLE PACKET SEQUENCES

Original seq.			Combined seq.				
	Pkt /pe	M	D	Pk typ		M	D
	A	1	0 –]			
	A	1	0-	<u> </u>	A	1	0
	A A	1	0 - 0 - 0 - 0 - 0		A	1	0
	A B	$ \begin{array}{c} 1\\0 \end{array} $	0 — 1 —		В	0	1
				S	Segn	nented	seq
	В	0	0_		A B	1	0

The Ohio State University

Packet Sequences (Contd)

Example Packet Sequences with

Intermediate End-to-end Acks

Pkt type	\mathbf{M}	D
A	1	0
A	1	$0 \mid *$
A	1	$O \mid$
В	1	1
A	1	0
A	1	0 *
В	1	1
A	1	0
A	1	0 *
A	1	$O \mid$
В	0	1

end of sequence

The Ohio State University

Raj Jain

^{*} Groups of packets that can be combined

Summary

- □ X.21, LAPB
- □ PVC and virtual call
- VC numbers
- A and B packets
- M and D bits

The Ohio State University

Raj Jain