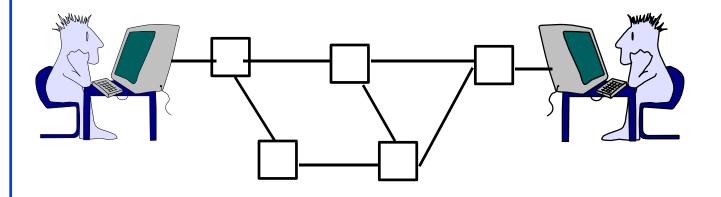
A Review of Key Networking Concepts

Raj Jain

Raj Jain is now at Washington University in Saint Louis Jain@cse.wustl.edu

http://www.cse.wustl.edu/~jain/

The Ohio State University



- □ ISO/OSI Reference Model
- □ Ethernet/IEEE 802.3 LANs
- □ Interconnecting Devices
 All these concepts are taught in CIS677.

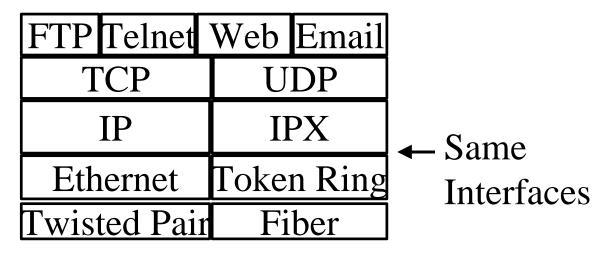
The Ohio State University

Raj Jain

OSI Reference Model

	Application
4	Presentation
L	Session
3E	Transport
2L	Network
1	Datalink
	Physical
	•

File transfer, Email, Remote Login ASCII Text, Sound Establish/manage connection

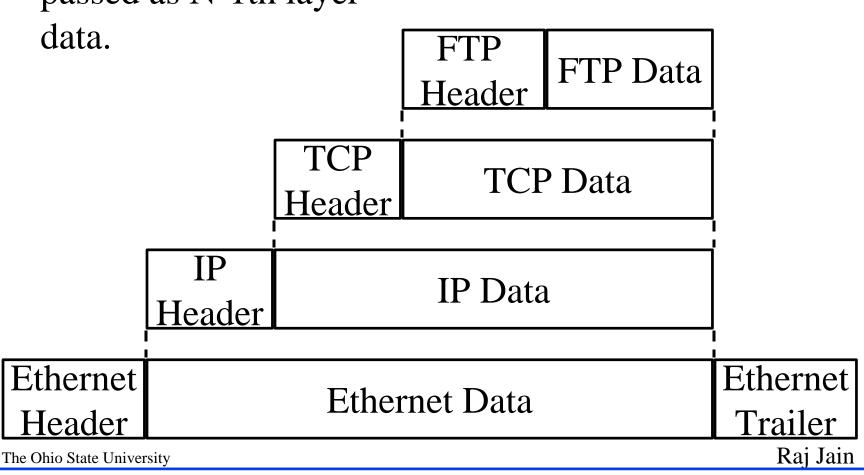

End-to-end communication: TCP

Routing, Addressing: IP Media Sharing: Ethernet

How to transmit signal: Coding

The Ohio State University

Layering

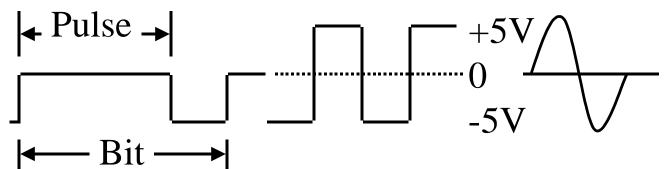


- Protocols of each layer perform a set of functions
- □ All alternatives for a row have the same interfaces
- Choice of protocols at each layer is independent of those of at other layers.

UDP = User Data Protocol, TCP = Transmission Control Protocol, IPX = Internetwork Packet Exchange Raj Jain The Ohio State University

Layered Packet Format

□ Nth layer control info is passed as N-1th layer


Transmission Media

- Magnetic Media: Physically transfer data stored on a magnetic tape or floppy disk
- Guided Media: UTP, STP, Coax, Fiber

The Ohio State University

Raj Jain

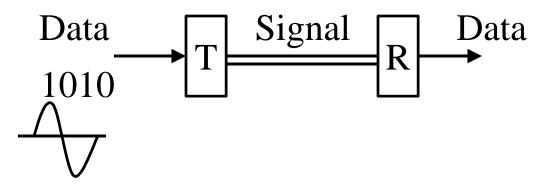
Coding Terminology

- □ Signal element: Pulse
- Modulation Rate: 1/Duration of the smallest element
 =Baud rate
- Data Rate: Bits per second
- Data Rate = Fn(Bandwidth, signal/noise ratio, encoding)

The Ohio State University Raj Jain

Channel Capacity

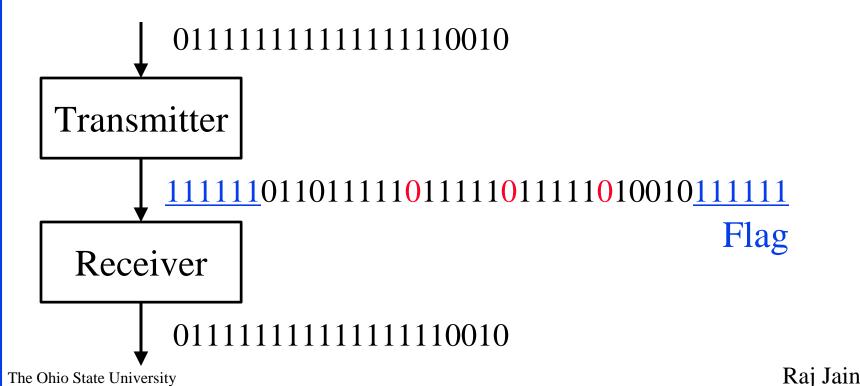
- Capacity = Maximum data rate for a channel
- **■** Nyquist Theorem:
- \square Bilevel Encoding: Data rate = 2 × Bandwidth


q Multilevel coding: Data rate = $2 \times \text{Bandwidth} \times \log_2 M$

Example: M=4, Capacity = $4 \times B$ and width

The Ohio State University

Data vs Signal


- Data: Analog (Music), Digital (files)
- Signal: Analog (POTS, Radio), Digital (ISDN)

Data	Signal		Examples
Analog	Analog	Modulation	AM, FM
Digital	Analog	Coding/Keying	ASK, FSK, PSK
Analog	Digital	Modulation	PCM, ADPCM
Digital	Digital	Coding	Machester, NRZ

The Ohio State University

Bit Stuffing

- Delimit with special bit pattern (bit flags)
- ☐ Stuff bits if pattern appears in data
- Remove stuffed bits at destination

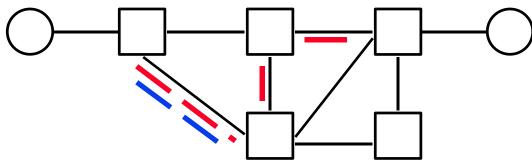
Flow Control

- □ Flow Control = Sender does not flood the receiver, but maximizes throughput
- Sender throttled until receiver grants permission
- Methods:
 - Stop and wait
 - Sliding window

The Ohio State University

Raj Jain

Error Control


- □ Error Control = Deliver frames without error, in the proper order to network layer
- Error control Mechanisms:
 - Ack/Nak: Provide sender some feedback about other end
 - Time-out: for the case when entire packet or ack is lost
 - Sequence numbers: to distinguish retransmissions from originals
- □ ARQ: Stop and Wait, Selective Reject, Go-back n

The Ohio State University

Raj Jain

Connection-Oriented vs

Connectionless

- Connection-Oriented: Telephone System
 - Path setup before data is sent
 - Data need not have address. Circuit number is sufficient.
- □ Connectionless: Postal System.
 - Complete address on each packet
 - The address decides the next hop at each router

The Ohio State University

Multiple Access Protocols

- □ Aloha at University of Hawaii:
 Transmit whenever you like
 Worst case utilization = 1/(2e) = 18%
- □ CSMA: Carrier Sense Multiple Access Listen before you transmit
- CSMA/CD: CSMA with Collision Detection Listen while transmitting.
 Stop if you hear someone else.
- Ethernet uses CSMA/CD.

 Standardized by IEEE 802.3 committee.

The Ohio State University

Raj Jain

Interconnection Devices

- **Repeater**: PHY device that restores data and collision signals
- Hub: Multiport repeater + fault detection and recovery
- **Bridge:** Datalink layer device connecting two or more collision domains. MAC multicasts are propagated throughout "extended LAN."
- Router: Network layer device. IP, IPX, AppleTalk. Does not propagate MAC multicasts.
- □ **Switch**: Multiport bridge with parallel paths

These are functions. Packaging varies.

The Ohio State University

Interconnection Devices LAN= B Collision Router Domain Extended LAN =Broadcast domain **Application** Application Gateway Transport Transport Network Network Router Datalink Datalink Bridge/Switch Physical Physical Repeater/Hub Raj Jain The Ohio State University

IEEE 802 Address Format

q 48-bit:1000 0000 : 0000 0001 : 0100 0011

: 0000 0000 : 1000 0000 : 0000 1100

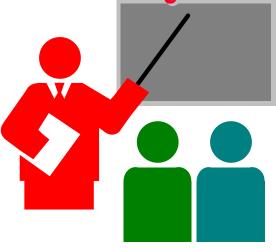
= 80:01:43:00:80:0C

Organizationally Unique

Identifier (OUI)

Individual/ Universal/
Group Local

24 bits assigned by
OUI Owner


1 1 22 24

- □ Multicast = "To all bridges on this LAN"
- Broadcast = "To all stations"

= 1111111....111 = FF:FF:FF:FF:FF

The Ohio State University

Summary

- □ ISO/OSI reference model has seven layers. TCP/IP Protocol suite has four layers.
- □ Ethernet/IEEE 802.3 uses CSMA/CD.
- □ Addresses: Local vs Global, Unicast vs Broadcast.

The Ohio State University

Raj Jain

Homework

□ For each of the following addresses: indicate whether it is a multicast and whether it is a locally assigned address?

80:01:55:00:00:00

40:01:55:00:00:01

Were these addresses assigned by the same manufacturer?

The Ohio State University Raj Jain