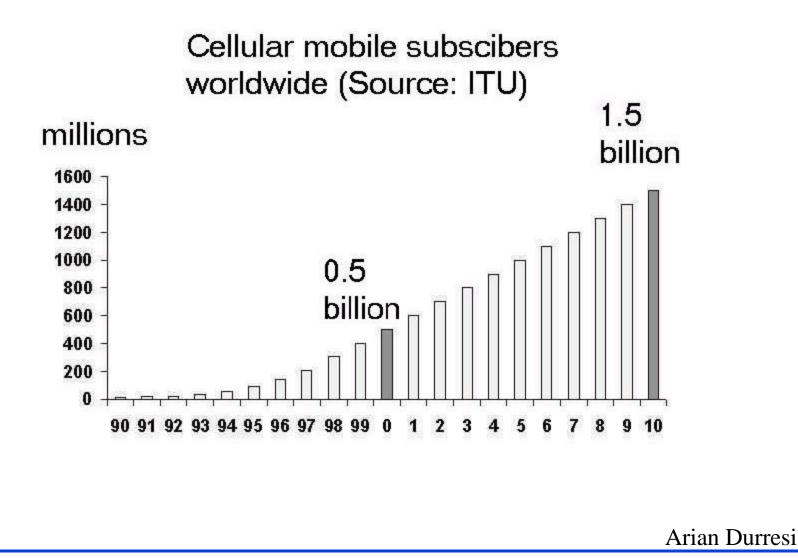
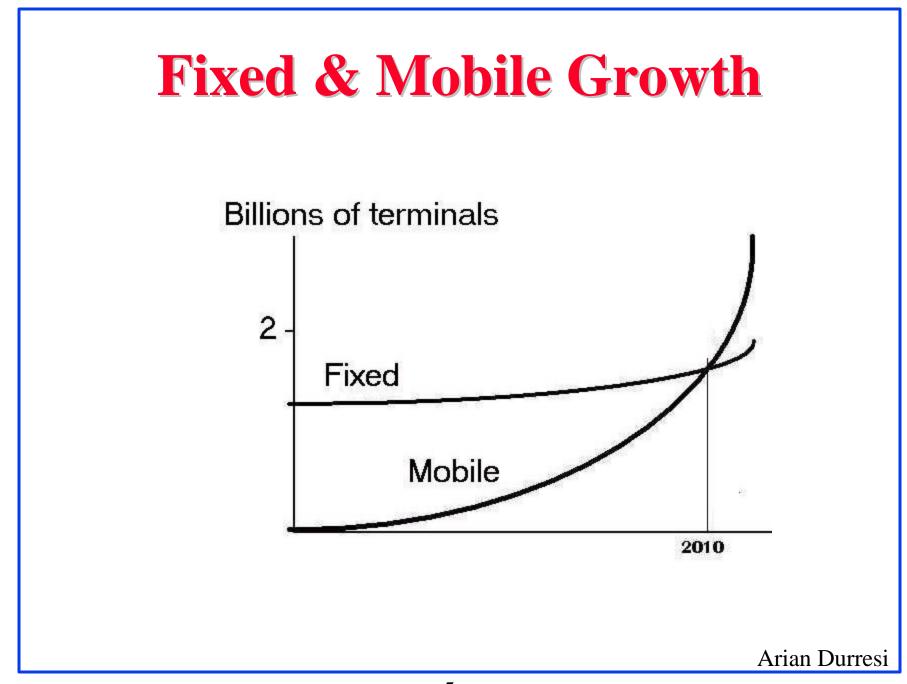
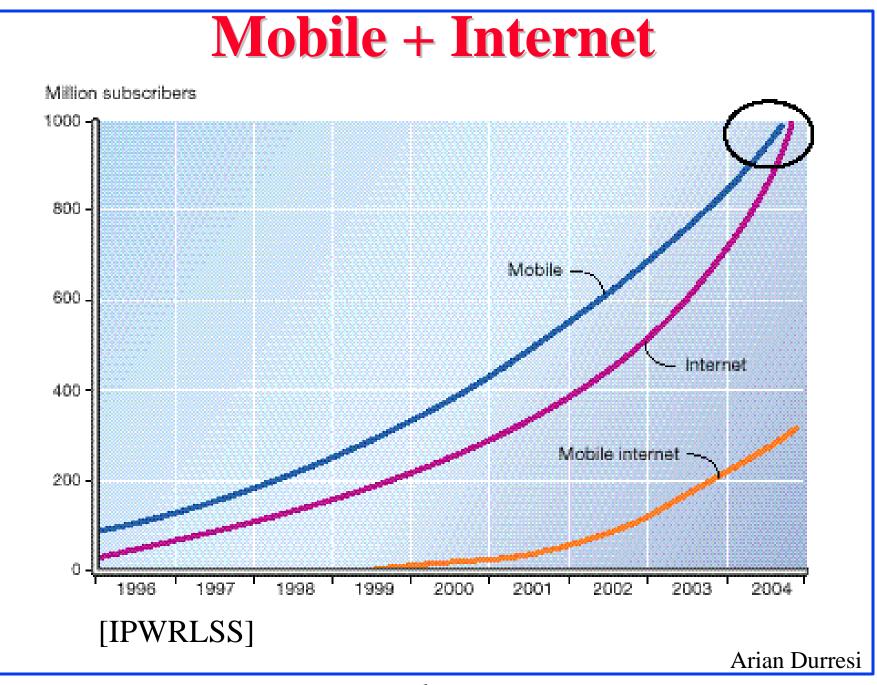

Wireless Mobile Telephony

Dr. Arian Durresi CIS Department The Ohio State University Columbus, OH 43210 Durresi@cis.ohio-state.edu


http://www.cis.ohio-state.edu/~durresi/




Why Wireless Mobile Telephony ?

- Negroponte Switch : Personal mobile communications go on Ether, Broadcast communications on cable
- Frequency Spectrum probably the most valuable natural resource
- Progress in microelectronic very smart mobile terminals
- □ More open for business opportunities
- Mobile phone the only technology with a growth rate higher than Internet. By the year 2003: 700 millions Internet users and 830 millions mobile phone users

Growth of Cellular Market

Mobile Phone First Generation

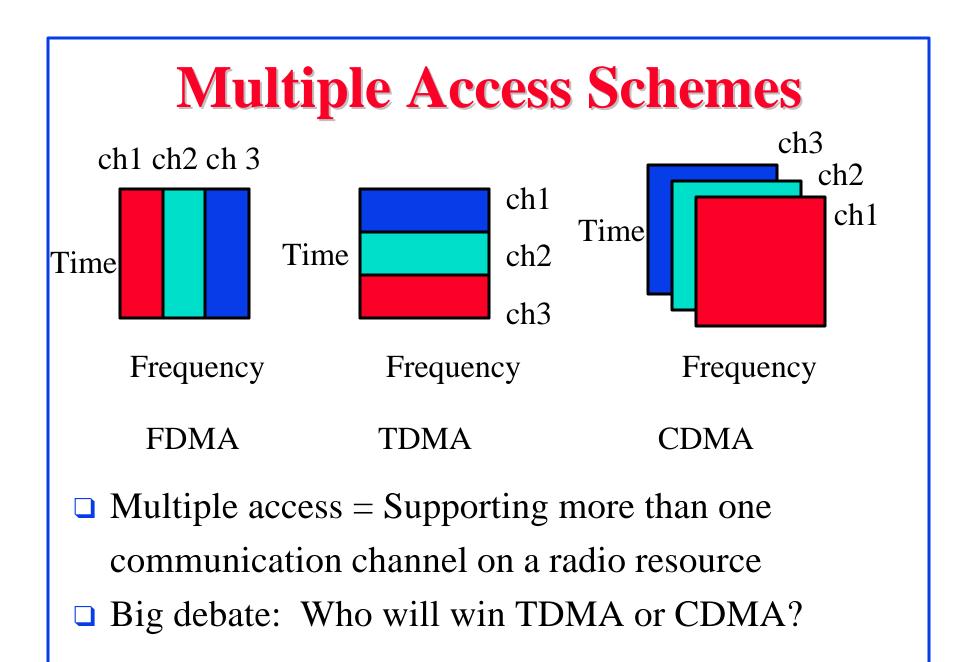
- □ First Generation: Analog, 70'-80', Access FDMA
 - Advanced Mobile Phone System (AMPS) 800 MHz, North America
 - Total Access Communication System (TACS) 900 MHz, Europe
 - Nordic Mobile Telephone (NMT) 450 and 900 MHz, Sweden, Norway, Denmark, Finland etc.
 - Good basic service, good territorial coverage.
 - Continue to operate profitably. Will survive for some time

Mobile Phone Second Generation (2G)

□ The need for second generation:

- Capacity: The old systems were almost saturated
- More services, specially value added
- Analog system more vulnerable to physical influences and disturbances

2G (cont.)

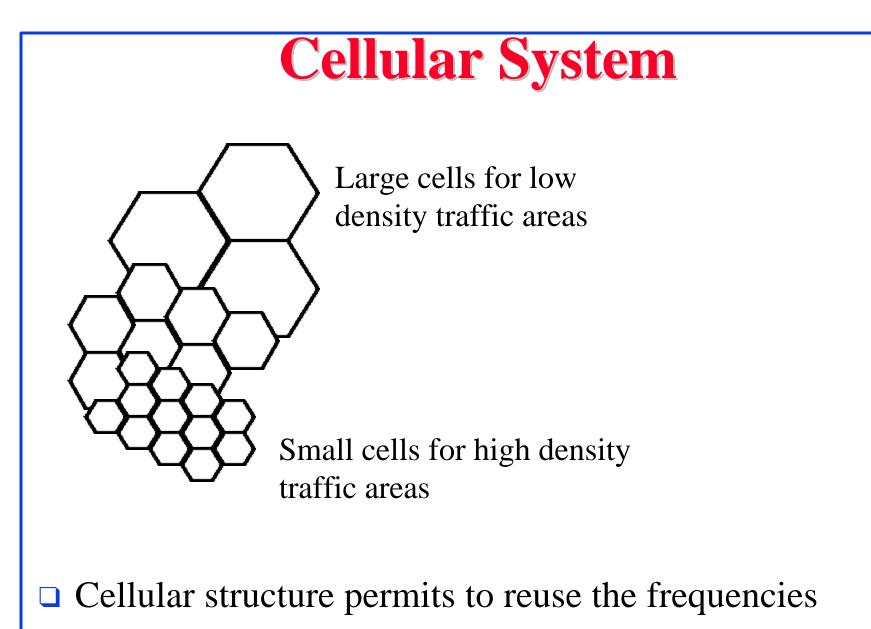

Second Generation. Digital Technology

- Global System for Mobile Communication (GSM), Europe +, US too
- Digital Advanced Mobile Phone System (D-AMPS): International Standard (IS-136), US +
- Interim Standard 95 (IS-95): 50% of US market, Asia (South Korea), South America.
- Personal Digital Cellular (PDC): Japan
- Third Generation in development: 2G will seamlessly evolve to provide high-speed data and support for multimedia application

2G (cont.)

Standard	Subscribers	Countries/	Monthly grow
	Millions	Networks	Millions
GSM	183.3	120/284	7.6
PDC	42.3	1/30.	0.6
IS-136	24.3	34/104	1.4
IS-95	31.5	12/31.	1.5

[3GSTD] Digital Cellular Standards, End of June 1999

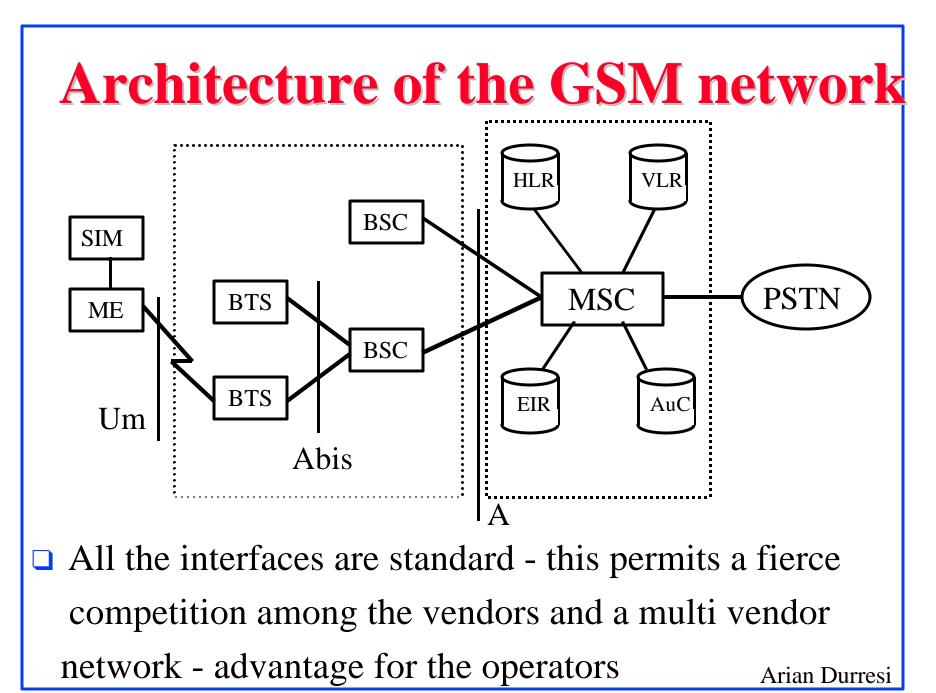


TDMA vs. CDMA

- Spectrum Efficiency: Which multiple access scheme has better bps/Hz.cell ?
- Flexibility: Which access scheme offers better flexibility to handle multi-rate, -cell, -load, and services ?
- TDMA: some flexibility advantages, but has a spectrum efficiency disadvantage
- CDMA: Less flexibility but has better spectrum efficiency Has
- □ Actual results depend on standards details

TDMA vs. CDMA cont.

- □ Answer unclear:
 - IS-95 is probably superior to IS-54/136
 - IS-95 vs. GSM is unclear
 - IS-95 is clearly more complex
- □ IS-54/136 is a grossly sub-optimum TDMA system
- GSM is a sub-optimum TDMA system (but pretty good)
- □ IS-95 is a sub-optimum CDMA system


and to distribute the resources depending on the traffic Arian Durresi

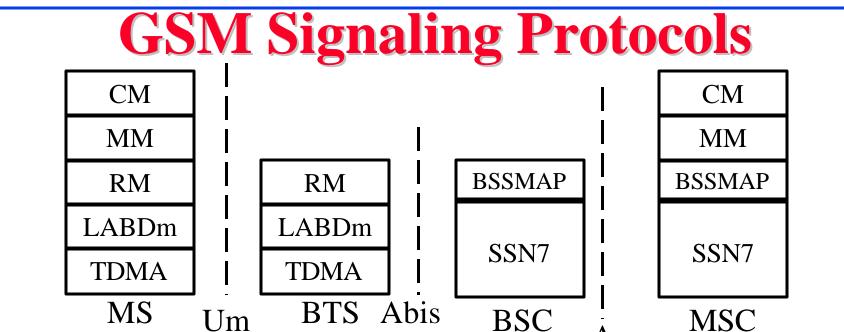
Radio Resource Management

- □ Cell planning and management quasi online [IRMA] :
 - 1. Simulation of radio propagation using data from satellite about the territory, building, vegetation etc.
 - 2. Optimization of step 1: radio parameters, power.
 - 3. The dimensions of the cells and number of channels are calculated from the traffic foreseen in that area.
 - 4. Frequency distribution among the cells, trying to reduce the interference.
- Specialized personnel, computer system: Operation Support Systems (OSS)

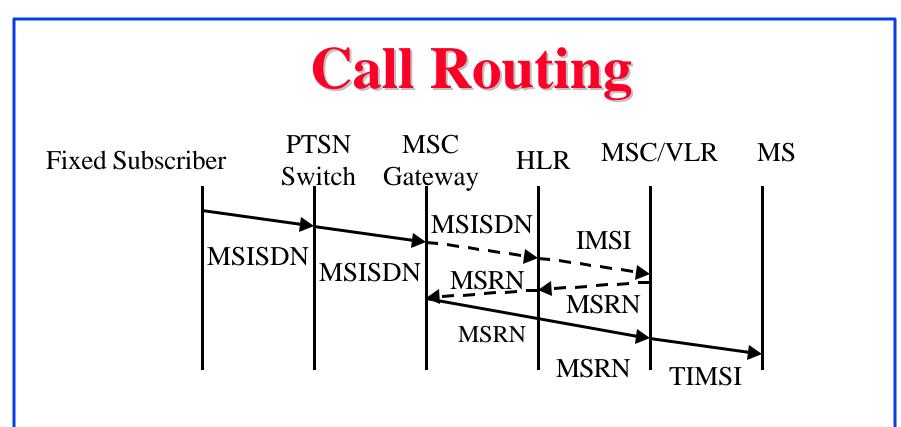
GSM

- Global System for Mobile Communication
- □ 1982 CEPT, 1989 ETSI, standard 8000 pages
- GSM 900 MHz, DCS 1800 MHz, DCS 1900 MHz in US and Canada
- □ Access scheme: TDMA /FDMA
- Services: Telephony digitized voice 13kbs, data services up to 9.6bps soon 38.4kbps, group 3 facsimile, Short Message Service (SMS), ISDN, X.25
- International roaming: Subscribers can use the same phone terminal around the world and bill to home. This is a very attractive feature for the users.

Elements of GSM Architecture


- □ SIM: Subscriber Identity Module contains the
 - International Mobile Subscriber Identity (IMSI) used to identify the subscriber to the system, a secret key for authentication
- □ ME: Mobile Equipment
- BTS: Base Transceiver Station handles the radio-link protocols with the Mobile Station.
- BSC: Base Station Controller handles radio-channel setup, frequency hopping, and handovers
- HLR: Home Location Register all the administrative information of each subscriber, and the current location of the mobile

 Architecture of GSM network
 VLR: Visitor Location Register contains selected information, for call control and services for mobiles located in its geographic area.


MSC: Mobile services Switching Center - normal switching node of the PSTN (Public Switched Telephone Network), plus functionality for registration, authentication, location updating, handovers, and call routing to a roaming subscriber.

EIR: Equipment Identity Register

AuC: Authentication Center stores a copy of the secret key of each subscriber's SIM card, used for authentication and encryption

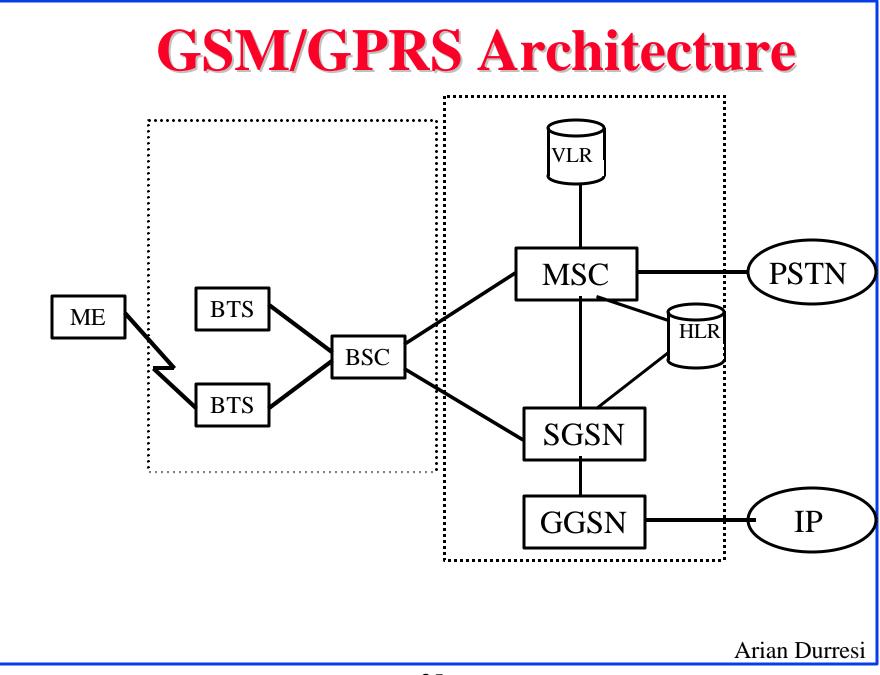
- RM: Radio Resources Management: Controls the setup, maintenance, and termination of radio and fixed channels, including handovers
- MM: Mobility Management: location updating, registration procedures, security and authentication.
- □ CM:Connection Management: call control.
- MAP: Mobile Application Protocol

- □ MSISDN: Mobile Subscriber ISDN
- □ IMSI: International Mobile Subscriber Identity
- □ MSRN: Mobile Station Roaming Number
- TIMSI: Temporary IMSI is used in the air to protect the real identity-IMSI
 Arian Durresi

GSM features

- 124 channel of 200kHz, each channel up to eight logic channels:
 - Traffic (TCH) voice/data, Control (CCH) control and signaling, Cell Broadcast (CBCH)
- Up to eight traffic channels TCH per frequency
- Multipath equalization. The system "studies" the radio channel using a known sequence in every data time slot, than "reacts" constructing an inverse filter.
- □ Frequency hopping helps to reduce interference
- Automatic Power Control reduces co-channel interference
- Layered signaling protocol

GSM features


- Handover or handoff: Switch an on-going call to a different channel or cell.
- □ Authentication: Fraud is a problem in mobile phone.
- □ Security: GSM can encrypt the air transmission
- High Speed Circuit Switched Data (HSCSD): A single user is allocated more than one time slot. Using eight time slots would give a transmission rate of 76.8 kbps

GSM Evolution

General Packet Radio Service (GPRS): Packet connection over GSM, 14 kbps over one time slot and 115 kbps over eight, allow connections to IP networks

• Two new network elements:

- Serving GPRS Support node (SGSN), similar functionality to packet data as MSC/VLR
- Gateway GPRS Support Node (GGSN), interface between mobile and IP or X.25 networks
- Enhanced Data Rates for GSM Evolution (EDGE), next step to 3G, IP-based services, 384 kbps
- Wideband CDMA introduces a new air interface on a 5MHz channel

IS-136

- Telecommunication Industry Association TIA standard IS-136, November 1994
- IS-136 or D-AMPS is a superset of IS-54, which is a development of AMPS (analog)
- □ AMPS: Advanced Mobile Phone System
- □ Access scheme: TDMA
- Frequencies 800MHz, 1.9GHz, Channel bandwidth 300KHz
- D-AMPS worldwide network with over 24 million subscribers, analog + digital 75 million
- □ Voice is digitized at 8kbps

IS-136 cont.

- It is possible to upgrade easily from an analog AMPS network to a digital D-AMPS network
- Digital and analog AMPS channels can co-exist in the same network
- A dual handset can operate in both analog and digital AMPS, in both 800 and 1900 MHz.
- Asynchronous data service, fax, Short Message Service, Sleep Mode capability
- □ Allow hierarchical cell structures to be implemented
- D-AMPS offers CDPD service

IS-136 Evolution to 3G

- First phase: IS-136+, significantly improves voice and data services, allow connectivity to IP networks
 - IS-136+ data service will be based on GPRS architecture (see GSM evolution)
- Second phase: IS-136HS High Speed extended data rate to 384kbps, will embrace the EDGE standard (at least outdoor) to meet 3G requirements.

IS-95 Telecommunication Industry Association (TIA) standard IS-95, July 1993, also known as cdmaOne and ANSI-95. Developed from Qualcomm's proposal □ Access scheme: narrowband CDMA, Walsh codes mutually orthogonal □ Frequencies: 800 MHz, 1.9 GHz. Radio channel bandwidth 1250 KHz. The band is divided in 20 full

- duplex carriers with up to 64 channels each.
- Limited international roaming

IS-95 cont.

- Services: Telephony digitized voice 8 and 13kbs, data services up to 9.6 bps and 14.4 kbps, fax.
- □ The mobile stations add a "pseudo random code" to the useful data, but with different time shift.
- □ Unique time offsets \Rightarrow Time synchronized.
- A pilot channel: demodulation reference for initial synchronization and power measurement for handover.
- A Sync channel conveys the timing and system configuration information to the mobile station
- Coverage, quality and capacity are related and must be balanced off of each other to arrive at the desired level of system performance. More difficult to be tuned.

IS-95 cont

- Simplified cell planning through the use of the same frequency in every cell
- Capacity increase, compared to GSM, but at the cost of quality and coverage.
- Automatic power control
- Soft handover: allows the mobile to communicate with multiple base stations simultaneously and chose the best of them.
- Effective fraud control
- □ Technology with a strong potential

IS-95 Evolution

- Two phases: IS-95B and cdma2000, the key advantage for the operators is preservation of capital investments, maintain backward compatibility with existing IS-95 infrastructure
- IS-95B will provide enhanced data rates 76.8 kbps or 115.2 kbps
 - Use burst mode: allowing up to 8 simultaneous transmissions/receptions on multiple channels
- cdma2000 will include wider channel bandwidth, combination of 1.25 MHz and 3.75 MHz, higher chip rate 3.68 MHz chip, permits the stations when is idle to release the traffic channel.

Third Generation (3G)

- □ 2G systems brought mobile telephony to mass market
- □ 3G will introduce value beyond basic telephony
- The challenge for 3G: To merge mobile telephony coverage with Internet and multimedia applications
 - Flexible multimedia management
 - Internet access: Provide mobile Internet
 - Flexible services
 - Cost-effective packet access for best-effort services

Third Generation (3G)

- Goals:
 - Multi-rate: 2Mbps indoor, 384 kbps pedestrian, 144 kbps mobile
 - Multi-service: Mobile Internet, Multimedia, packet and circuit switched services
 - Multi-cell: Seamless coverage across pico-, micro-, and macro-cells
 - Multi-Operator: Easy sharing of band at lowest granularity
 - High spectrum efficiency: Efficient utilization of the frequency spectrum
- ❑ Market driven standardization: de facto standards Arian Durresi

ITU International Mobile

Telecommunication (IMT) 2000

- December 1998: ARIB and TTC (Japan), ETSI (Europe), T1 (USA), and TTA (Korea) launched the "3rd Generation Partnership Project" (3GPP)
- March 1999 Ericsson and Qualcomm agree to harmonize WCDMA and to address the IPR issues
- March 1999 ITU approves key characteristics for the IMT 2000 radio interface: a family of standards
- Radio interface Combination of : wideband CDMA (WCDMA), time division CDMA (TD-CDMA), cdma2000, IS-136HS
- GSM network architecture will be integrated. Arian Durresi

3G: Mobile Internet

- □ Huge potential market: good match Internet + mobility
- I-mode in Japan build on IP-over-packet PDC, Sept.
 1999: 1.4 million subscribers with a weekly grow of 90,000 subscribers, simple, inexpensive
- Mobitex in US, Palm VII supports Web clipping with a Mobitex radio interface
- Mobile terminal and communicator manufacturers are fully ready to provide handsets for the mobile Internet
- First step: data best effort, for example GPRS (in GSM and IS-136), and voice circuit switched
- Next step: Data over IP, Voice over IP requires realtime IP
 Arian Durresi

3G: Mobile Internet

1999-2001

• Best-effort packet data, for example: GPRS, EDGE

- Voice circuit switched GSM/TDMA/CDMA
- **By** 2003:
 - WCDMA/EDGE/cdma2000
 - Real-time IP voice and data

- □ Wireless mobile telephony, three generations
- □ Longtime debate TDMA vs. CDMA
- **GSM**, IS-136, and IS-95
- □ Third generation hopefully will be a unique system
- Mobile Internet

Key References

- U. Black "Emerging Communications Technologies" Chapter 9
- A very good and concise GSM reference by John Scourias: <u>http://www.gsmdata.com/overview.htm</u>
- □ CDMA development group: <u>http://www.cdg.org</u>
- □ IMT 2000 : <u>http://www.itu.int/imt</u>
- D-AMPS, <u>http://www.ericsson.com/systems/d-amps/</u>
- Third Generation, <u>http://www-</u> isl.stanford.edu/groups/SARG/research.html
- □ GSM, <u>http://www.ericsson.com/systems/gsm/</u>

References (Cont)

- [IPWRLSS] G.A.P. Eriksson, B. Olin, K. Svanbro and D. Turina "The challenges of voice over IP over wireless", http://www.ericsson.com/review/
- [3GSTD] M. Nilsson "Third-generation radio access standards", http://www.ericsson.com/review/
- C. Andersson, P. Svensson "Mobile Internet—An industry-wide paradigm shift?" http://www.ericsson.com/review/
- [IRMA] Arian Durresi, "Developing IRMA-PS a Cell Planning System for GSM Networks", BSHT. Nr 2. 1996
- Th. S. Rappart "Wireless Communications" Prentice Hall 1996
 Arian Durresi

References (Cont)

- V. K. Garg "Wireless and Personal Communications Systems" Prentice Hall 1996
- □ R. Schneider "Future Talk" IEEE Press 1997
- S. M. Redl "An Introduction to GSM" Artech House 1995
- I. Brodsky "Wireless: The revolution in personal telecommunications"