ATM Networks: An Overview Raj Jain Raj Jain is now at Washington University in Saint Louis Jain@cse.wustl.edu http://www.cse.wustl.edu/~jain/ Raj Jain

- □ ATM vs Phone Networks and Data Networks
- □ ATM Protocol Layers
- Cell Header Format, AALs
- Physical Media

ATM

- □ ATM Net = Data Net + Phone Net
- Combination of Internet method of communication (packet switching) and phone companies' method (circuit switching)

- Current phone networks are synchronous (periodic).
 ATM = Asynchronous Transfer Mode
- Phone networks use circuit switching.
 ATM networks use "Packet" Switching
- In phone networks, all rates are multiple of 8 kbps.
 With ATM service, you can get any rate.
 You can vary your rate with time.
- With current phone networks, all high speed circuits are manually setup. ATM allows dialing any speed.

ATM vs Data Networks

- Signaling: Internet Protocol (IP) is connectionless.
 You cannot reserve bandwidth in advance.
 ATM is connection-oriented.
 You declare your needs before using the network.
- □ PNNI: Path based on quality of service (QoS)
- Switching: In IP, each packet is addressed and processed individually.
- Traffic Management: Loss based in IP.
 ATM has 1996 traffic management technology.
 Required for high-speed and variable demands.
- □ Cells: Fixed size or small size is not important

Solution 1: Fix the old house (cheaper initially) Solution 2: Buy a new house (pays off over a long run)

ATM Interfaces

- User to Network Interface (UNI): Public UNI, Private UNI
- □ Network to Node Interface (NNI):
 - Private NNI (P-NNI)
 - Public NNI =Inter-Switching System Interface (ISSI) Intra-LATA ISSI (Regional Bell Operating Co)
 - > Inter-LATA ISSI (Inter-exchange Carriers)
 ⇒ Broadband Inter-Carrier Interface (B-ICI)
- Data Exchange Interface (DXI)
 Between routers and ATM Digital Service Units (DSU)

Protocol Layers

Protocol Layers

- □ The ATM Adaptation Layer
 - How to break messages to cells
- **The ATM Layer**
 - o Transmission/Switching/Reception
 - Congestion Control/Buffer management
 - Cell header generation/removal at source/destination
 - Cell address translation
 - Sequential delivery

Cell Header Format

- GFC = Generic Flow Control (in UNI but not in NNI)
- Virtual Path ID (VPI), Virtual Channel ID(VCI)
 Protocol Type ID (PTI), Cell Loss Priority (CLP)
- □ Header Error Check (HEC): $1 + x + x^2 + x^8$

GFC/VPI	VPI		
VPI	VCI		
VCI			
VCI	PTI	CLP	
Header Error			
Payload			
J			Ra

Path vs Channels

24/28-bit connection identifier
 First 8/12 bits: Virtual Path,
 Last 16 bits: Virtual Circuit

□ VP service allows new VC's w/o orders to carriers

Original Classes of Traffic

	Class A	Class B	Class C	Class D
Time Sync	Yes	Yes	No	No
Bit Rate	Constant	Variable	Variable	Variable
Connection	Yes	Yes	Yes	No
-Oriented				
Examples	Circuit	Comp.	Frame	SMDS
	Emulation	Video	Relay	
AAL	AAL1	AAL2	AAL3	AAL4

·

AAL 5

- Designed for data traffic
- Less overhead bits than AAL 3/4
 Simple and Efficient AAL (SEAL)
- □ No per cell length field, No per cell CRC

AAL2

- □ Ideal for low bit rate voice
- □ Variable/constant rate voice
- □ Multiple users per VC
- Compression and Silence suppression
- □ Idle channel suppression

Physical Media

- Multimode Fiber: 100 Mbps using 4b/5b,
 155 Mbps SONET STS-3c, 155 Mbps 8b/10b
- □ Single-mode Fiber: 155 Mbps STS-3c, 622 Mbps
- Plastic Optical Fiber: 155 Mbps
- □ Shielded Twisted Pair (STP): 155 Mbps 8b/10b
- Coax: 45 Mbps, DS3, 155 Mbps
- □ Unshielded Twisted Pair (UTP)
 - UTP-3 (phone wire) at 25.6, 51.84, 155 Mbps

• UTP-5 (Data grade UTP) at 155 Mbps

□ DS1, DS3, STS-3c, STM-1, E1, E3, J2, n × T1

- □ ATM Overview: History, Why and What
- Protocol Layers: AAL, ATM, Physical layers, Cell format
- □ Interfaces: PNNI, NNI, B-ICI, DXI

ATM : Key References

- Read Sections 11.3.4-11.3.6, 12.1, 12.4, 13.1, 13.3, 13.5 of McDysan's book
- K. Siu and R. Jain, "A Brief Overview of ATM: Protocol Layers, LAN Emulation, and Traffic Management," Computer Communications Review (ACM SIGCOMM), April 1995, <u>http://www.cis.ohiostate.edu/~jain/</u>
- ATM Forum specs are available at <u>ftp://ftp.atmforum.com/pub/approved-specs/</u>
- □ For additional references, see <u>http://www.cis.ohio-</u> <u>state.edu/~jain/refs/atm_refs.htm</u>