
Chapter 32 Initialization (BOOTP and DHCP)

Raj Jain

Raj Jain is now at Washington University in Saint Louis Jain@cse.wustl.edu

http://www.cse.wustl.edu/~jain/

The Ohio State University

Raj Jain

Bootstrapping

- Computer loads a simple boot program. The boot program loads operating system.
- On diskless machine, the computer needs to know the network address of the o/s file
- □ It needs to know its own IP address.
- □ It only knows its h/w address.

Configuration

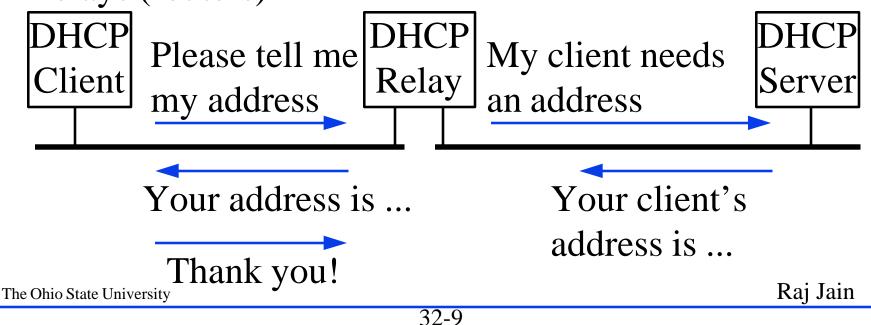
- □ Protocols are software routines.
- □ All nodes have the same software.
- Different nodes have different parameters: Addresses, packet size, etc.
- Configuration = Setting the parameters
- IP Address
- Default router address
- Subnet mask
- DNS server addresses

Method 1: Long Past

- Reverse ARP: "What is the IP address of h/w address xx:xx:...?"
- □ But RARP uses IP \Rightarrow Needs IP address.
- □ Solution: Use 00.00.00.00 as source address.
- □ ICMP: What is my subnet mask?
- □ ICMP: What is my default router?
- Problem: What is the boot file name for IP address nn.nn.nn...?

Method 2: Past

- □ Broadcast BOOTP (Bootstrap Protocol) request.
- Reply: IP Address, Boot Server IP address, Default Router, Boot file name, subnet mask
- Get boot image using a simple FTP program
 ⇒ Trivial File Transfer Protocol (TFTP)
- Problem: Why waste an address when it is not being used.


Method 3: Current

- Dynamic Host Configuration Protocol (DHCP)
 = BOOTP + Dynamic allocation of IP addresses
 ⇒ Addresses are leased for a period. Reallocated to the same or other nodes after lease expiry.
- □ Nonmobile computers get a permanent address.

0 BOOTP Message Format 31			81b	
Operation	H/W Type	H/W Length	Hops	
	Transaction	n Identifier		
Seconds elapsed Unused				
	Client IP Address			
Your IP Address				
Server IP Address]	
Router IP Address				
	Client H/W address			16 B
Server Host Name		64 B		
Bootfile Name		128 B		
Vendor Specific Area		64 B		
The Ohio State University		22.9		Raj Jain

BOOTP Message (Cont)

- \Box Operation: 1 = Request, 2 = Reply
- \Box H/w type: 1 = Ethernet
- □ H/w Address Length
- Hops: Initialized to zero. Incremented by DHCP relays (routers)

BOOTP Message (Cont)

- □ Transaction ID: used to match responses with requests
- Seconds = Number of seconds since the client started to boot
- If a client knows its IP address, it places it in the Client IP address
- □ If server address/name fields are non-zero in the request, only the indicated host can answer the request
- Your IP Address: Clients IP address returned by the server

BOOTP Message (Cont)

- Boot File name: Generic name like "unix" in the request. Full name in response.
- Vendor specific area: Misnomer. Also used for general purpose info.
- □ Magic cookie: First four octets = 99.130.83.99
- **Type-length-value**

Item	Code	Length
Padding	0	_
Subnet mask	1	4
Time of Day	2	4
End	255	-

The Ohio State University

Contents of Vendor-Specific Area

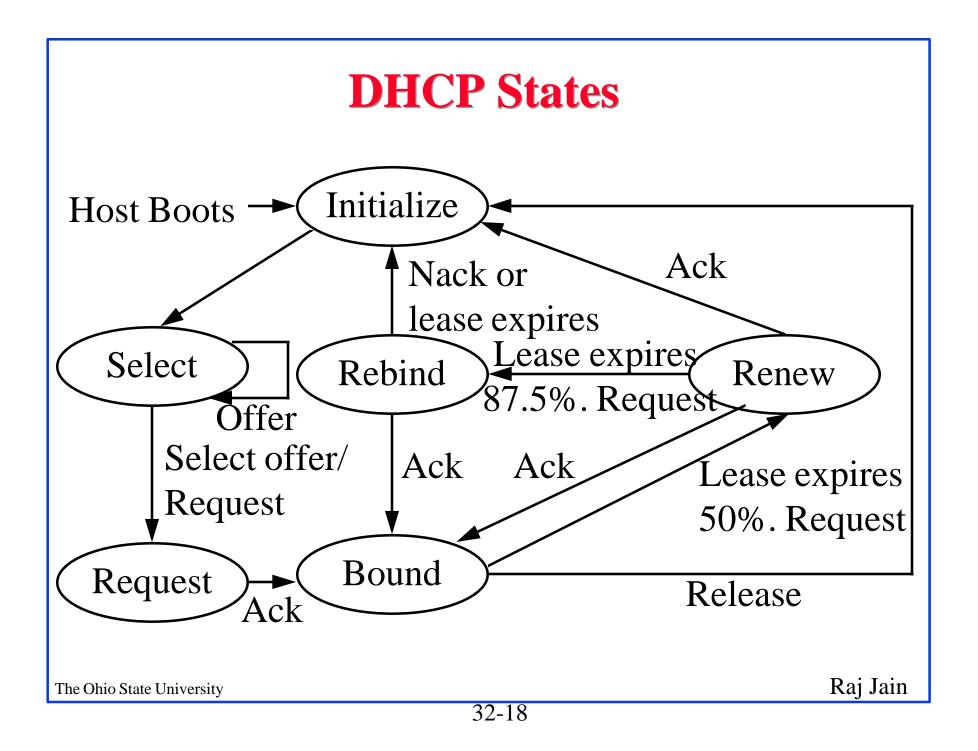
Item	Code	Length
Routers	3	4n
Time Server	4	4n
IEN116 Server	5	4n
Domain server	6	4n
Log server	7	4n
Quote server	8	4n
LPR servers	9	4n
Impress servers	10	4n
RLP Server	11	4n
Host name	12	4n
Boot size	13	2
Reserved	128-254	-
The Ohio State University		

Raj Jain

BOOTP Operation

- **BOOTP** request is broadcast
- □ BOOTP requires only a single packet exchange
- BOOTP uses UDP ⇒ Bootstrapping can occur across a router
- □ BOOTP UDP to use checksum
- BOOTP replies are also broadcast (since no one knows the requesters IP address, ARP will fail).
- BOOTP requests and replies are sent with "no fragment bit" set

- \Box Multiple replies \Rightarrow process the first one
- Clients uses timeout and retransmission
- The timeout interval is random to avoid synchronization after a power failure


0 DHCP Message Format 32			31b	
Operation	H/W Type	H/W Length	Hops	
	Transaction	n Identifier		
Seconds elapsed Flags				
	Client IP	Address		
	Your IP Address			
Server IP Address				
	Router IF	P Address		
	Client H/W address			16 B
Server Host Name			64 B	
Bootfile Name		128 B		
	Options (Variable)]
The Ohio State University		32-15		Raj Jain

DHCP Message Format

- Slightly modified version of BOOTP message ⇒ A DHCP server can be programmed to answer BOOTP requests
- □ BOOTP's Unused field renamed to Flags
- Only one bit of 16-bit Flags has been defined
- ❑ Left-most flag bit =1 ⇒ Servers, please reply using IP broadcast address
- Servers always send hardware unicast response
- □ Vendor specific field renamed to options
- Option type 53 specifies the "type of the message"


□ "Option overload" option ⇒ Server Host name and boot file name fields contain options

Туре	Meaning
1	DHCP Discover
2	DHCP Offer
3	DHCP Request
4	DHCP Decline
5	DHCP Ack
6	DHCP Nack
7	DHCP Release

DHCP: Current Issues

- □ Interaction with DNS
- □ Should the names be dynamically leased?
- □ Should the names be registered on DNS?
- Currently there are no protocols for dynamic DNS updates.

- **RARP** allows finding an IP address
- □ BOOTP allows default router, subnet mask, DNS
- **DHCP** allows dynamic allocation
- **DHCP** is backward compatible with BOOTP

Homework

- □ Read Chapter 32 and RFC 1541
- □ Submit the answer to Exercise 32.7

The Ohio State University

BOOTP and DHCP: References

- D. E. Comer, "Internetworking with TCP/IP," Vol. 1, 3rd Ed, Prentice Hall, 1995, Chapter 21.
- S. A. Thomas, "IPng and the TCP/IP Protocols," Wiley, 1996, Chapter 14.

Initialization: RFCs

- [RFC1533] S. Alexander, R. Droms, "DHCP Options and BOOTP Vendor Extensions", 10/08/1993, 30 pages.
- [RFC1534] R. Droms, "Interoperation Between DHCP and BOOTP", 10/08/1993, 4 pages.
- [RFC1541] R. Droms, "Dynamic Host Configuration Protocol", 10/27/1993, 39 pages.
- [RFC1542] W. Wimer, "Clarifications and Extensions for the Bootstrap Protocol", 10/27/1993, 23 pages.
- [RFC0951] W. Croft, J. Gilmore, "Bootstrap Protocol", 09/01/1985, 12 pages. (Updated by RFC1532, RFC1395, RFC1497)
- [RFC0906] R. Finlayson, "Bootstrap loading using TFTP", 06/01/1984, 4 pages.