

- Logical Link Control
- Bridges
- □ Path determination: Spanning tree, source routing

IEEE 802

- 802.1 Network management and bridging
- □ 802.2 Logical link control
- □ 802.3 Ethernet (CSMA/CD)
- **3** 802.4 Token Bus
- 802.5 Token Ring
- **802.6 DQDB**
- □ 802.7 Broadband technical advisory group
- □ 802.8 Fiber-optic technical advisory group
- □ 802.9 Integrated data and voice
- **BO2.10 Security and privacy**

IEEE 802 (Cont)

- □ 802.11 Wireless LANs
- □ 802.12 100VG-AnyLAN
- □ 802.13 ?Bad Luck
- **802.14**

The Ohio State University

LLC Type 1

 Unacknowledged connectionless (on 802.3) No flow or error control.
 Provides protocol multiplexing.
 Uses 3 types of protocol data units (PDUs):
 UI = Unnumbered informaton
 XID = Exchange ID

 Types of operation supported, window
 Test = Loop back test

LLC Type 2, 3

- Type 2: Acknowledged connection oriented (on 802.5) Provides flow control, error control. Uses
 SABME (Set asynchronous balanced mode), UA (unnumbered ack), DM (disconneced mode), DISC (disconnect)
- Type 3: Acknowledged connectionless Uses one-bit sequence number AC command PDUs acked by AC response PDUs

LLC Multiplexing

- Multiplexing allows multiple users (network layer protocols) to share a datalink
- Each user is identified by a "service access point (SAP)"

 DSAP
 SSAP
 Control
 Info

8

8

- q Eight-bit SAP
 - \Rightarrow Only 256 standard values possible

8

q Even IP couldn't get a standard SAP.
 Use Subnetwork Access Protocol SAP (SNAP SAP)

Size in bits

SNAP SAP

- SubNetwork Access Protocol Service Access Point
- When DSAP=AA, SSAP=AA, Control=UI, protocol ID field is used for multiplexing

DSAP SSAP Control

	AA	AA	03	Protocol ID	Info
--	----	----	----	-------------	------

40 bits

q Protocol ID is 40 bit long. The first 24 bits are
Organizationally Unique Identifiers (OUI). OUI of 0 is used. The Ethernet type values are used in the last 16 bits.

Protocol ID = 00-00-00-xx-xx The Ohio State University

Bridge: Functions

- Monitor all frames on LAN A
- □ Pickup frames that are for stations on the other side
- **Retransmit the frames on the other side**
- □ Knows or learns about stations are on various sides
- Makes no modification to content of the frames.
 May change headers.
- □ Provides storage for frames to be forwarded
- □ Improves reliability (less nodes per LAN)
- □ Improves performance (more bandwidth per node)
- □ Security (Keeps different traffic from entering a LAN)
- □ May provide flow and congestion control

The Ohio State University

Interconnection Devices

- **Repeater**: PHY device that restores data and collision signals
- Hub: Multiport repeater + collision detection, notification and signal broadcast
- Bridge: Datalink layer device connecting two or more collision domains
- **Router:** Network layer device (does propagate MAC

Data Encaptulation by Bridges

Bridges for Point-to-point links Station USER USER Bridge Bridge 9 1 LLC LLC 2 8 **MAC** MAC Link Link LAN LAN (a) Architecture User data LLC-H User data MAC-H LLC-H User data LLC-T Link-H MAC-H LLC-H User data LLC-T Link-T (b) Operation Fig 14.3 Raj Jain The Ohio State University

1. Fixed Routing

Central Routing Matrix

Destination LAN

Destination LAN									Bridge 101 table			Prideo 102 mala								
A B C D E				F	G	from	LANA	from LA	LAN B	from LAN A		from LANC		5	Bridge	103 table				
	•	-	101	102	101	107	102	102	Dest B C	Next B	Dest A	Next A	Dest B	Next	Dest A	Next	Dest A	Nexi -	from Dest A	LAN D Next B
Source LAN	B	101	-	101	103	104	101	101	DE	B -	D E		DE	- -	B D E	A A A	C D E	D	B C E	B B B
	c	102	102	-	102	102	105	106	Ğ	-	G	Â	F G	C C	F G	-	F G	-	F G	B B
	D	103	103	103	-	103	103	103	from Dest A C	Bridge 104 tab LAN B from Next Dest - A - B - C	104 table from LAN E Dest Next	from Dest	Bridge 1 LAN C Next	05 table from LAN F		Bridge I from LAN C		from LAN G		
	Е	107	104	107	104	-	107	107			A B C	B	A B D	-	A B	C	A		Dest A B	Next C C
	F	105	105	105	105	105	-	105	EFC	E -	DF	B	D E F	- - F	D E	CC	D E F		C D E	CCC
	G	106	106	106	106	1 06	106	-	, U	Bridge 1	G 107 table	-	G	-	G	С	G	G	F	č
									Dest B C D E F G	Next - - E -	Dest A B C D F G	Next A A A A A								
The	Oh	in St	oto I l							Fi	g 14	4.7							Dai 1	ain
The	UI	10 36			sity													-	ixaj J	am

Spanning Tree: Terminology

- □ Bridge Identifier: MAC address plus a priority level
- Port identifier: For each port of a bridge
- □ Path cost: Cost transmitting through a port
- □ Root Bridge: The bridge with the lowest identifier
- □ Root port: Port with minimum cost to the root bridge
- □ Root path cost: Cost of the path to the root bridge
- Designated bridge: One per LAN. Provides minimum cost path from the LAN to the root bridge.
- Designated Port: Connects designated bridge to LAN

Spanning Tree Algorithm

- □ All bridges multicast to "All bridges"
 - o My ID
 - Root ID
 - My cost to root
- The bridges update their info using Dijkstra's algorithm and rebroadcast
- Initially all bridges are roots but eventually converge to one root as they find out the lowest Bridge ID.
- On each LAN, the bridge with minimum cost to the root becomes the Designated bridge
- □ All ports of all non-designated bridges are blocked.

3. Source Routing

- The frame header contains the complete route: LAN 1 - Bridge B1 - LAN 3 - Bridge B3 - LAN 2 - Dest
- □ Bridges are simple, end systems do the routing
- □ Four types of destination addressing:
 - Null: Destination on the same LAN
 - Non-broadcast: Includes a route to destination
 - All-route Broadcast: Flooded.
 Bridges record route in the frame.
 - Single-route Broadcast: Once and only once on each LAN. Spanning tree used for broadcast

Route Discovery

- □ Manually on small internets
- □ Route server
- Dynamic route discovery
 - Transmit "All-route request frame" to destination The destination sends back "non-broadcast response" on each frame. Source knows all routes to the destination. Selects one.
 - Transmit "single-route request frame" to dest. The destination responds with one "All-routes response." The source receives many responses and discovers all routes.

The Ohio State University

Example

The Ohio State University

(c) All-routes broadcast response

Fig 14.12

- □ Ethernet bridges learn source addresses
- Spanning tree algorithm
- □ Token ring bridges use source route

Homework **Read chapter 14.1, 14.2** Raj Jain The Ohio State University

