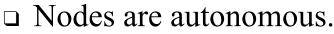
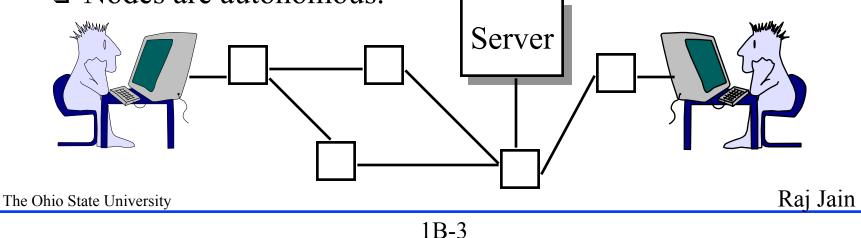

Chapter 1: Introduction

Raj Jain

Raj Jain is now at Washington University in Saint Louis Jain@cse.wustl.edu http://www.cse.wustl.edu/~jain/

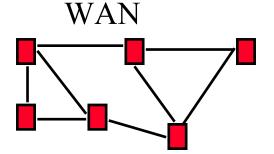
The Ohio State University

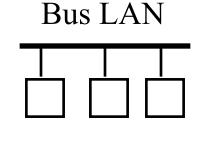


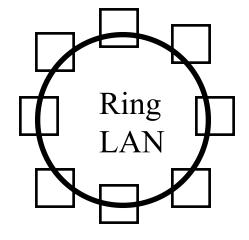

Distributed Systems vs Networks

Distributed Systems:

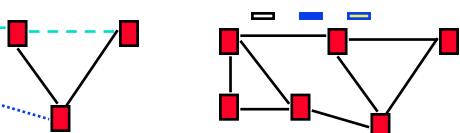
Users are unaware of underlying structure.
 E.g., trn instead of \n\bone\0\trn

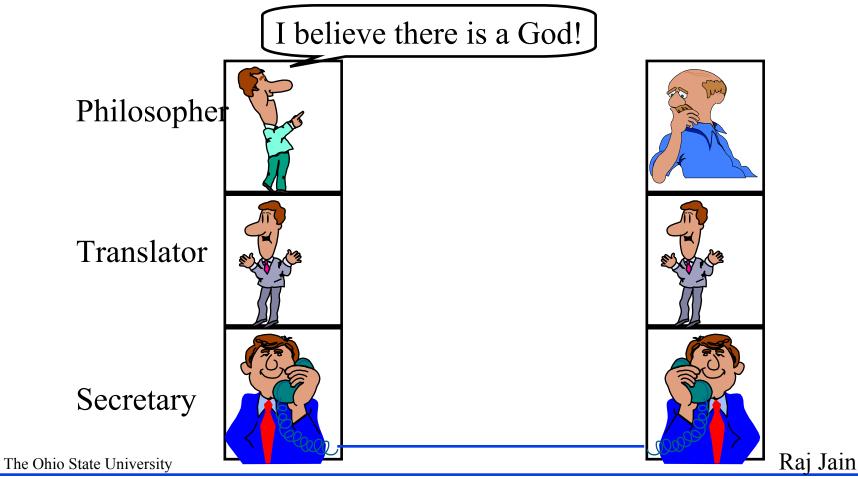

- □ Mostly operating systems issues.
- □ Nodes are generally under one organization's control.
- Networks: Users specify the location of resources. http://www.cis.ohio-state.edu/~jain/





Types of Networks



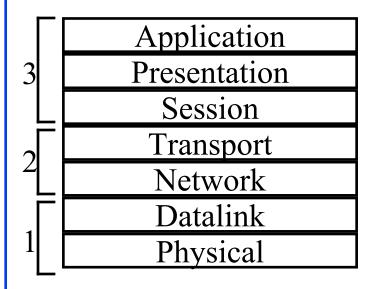

□ Circuit switched vs packet switched

 Local Area Networks (LAN) 0-2 km, Metropolitan Area Networks (MAN) 2-50 km, Wide Area Networks (WAN) 50+ km The Ohio State University
 Raj Jain

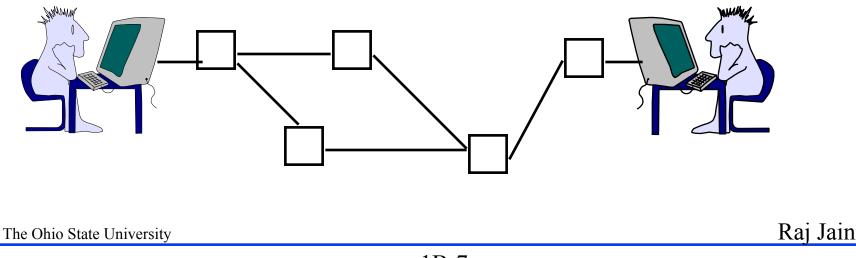
Protocol Layers

 Problem: Philosophers in different countries speak different languages. The Telex system works only with English.

Design Issues for Layers

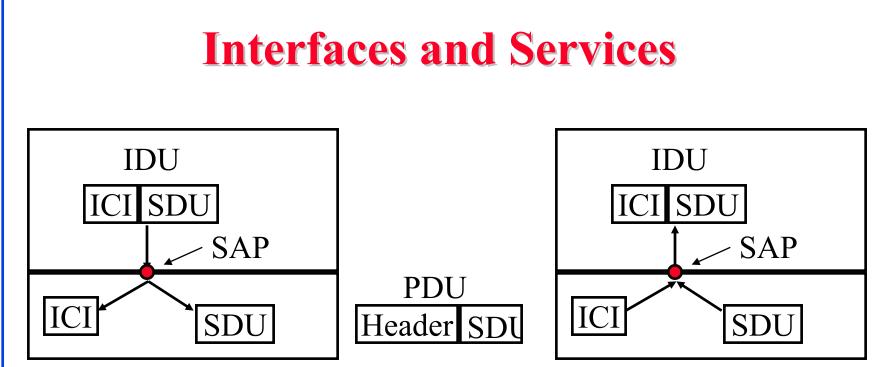

Duplexity:

□ Simplex: Transmit or receive


□ Full Duplex: Transmit and receive simultaneously

- □ Half-Duplex: Transmit and receive alternately
- □ Error Control: Error detection and recovery
- □ Flow Control: Fast sender

ISO/OSI Reference Model

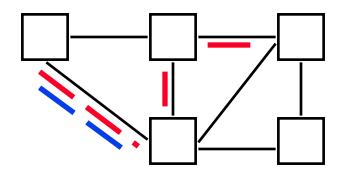

File transfer, Email, Remote Login ASCII Text, Sound Establish/manage connection End-to-end communication: TCP Routing, Addressing: IP Two party communication: Ethernet How to transmit signal: Coding

Layering

FTP Telnet	Web Email			
ТСР	UDP			
IP	IPX	- Same		
Ethernet	Token Ring	Interfaces		
Copper	Fiber]		

- □ Protocols of each layer have to perform a set of functions
- □ All alternatives for a row have the same interfaces
- Choice of protocols at each layer is independent of those of at other layers. E.g., IP works over Ethernet or token ring
 UDP = User Data Protocol, TCP=Transport Control Protocol
- □ Need one component of each layer \Rightarrow Null components
- Nth layer control info is passed as N-1th layer data. The Ohio State University

- □ IDU = Interface Data Unit = ICI + SDU
- □ ICI = Interface Control Information
- □ SDU = Service Data Unit
- PDU = Protocol Data Unit = Fragments of SDU + Header or Several SDUs + Header (blocking)
- $\Box SAP = Service Access Point$


Protocol Data Unit (PDU)

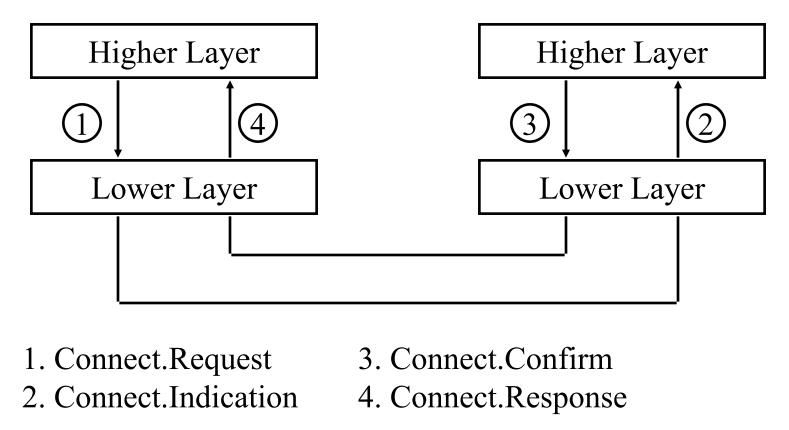
Application	APDU, Message	Application Presentation	
Presentation	PPDU		
	SPDU		
Session	TPDU	Session	
Transport		Transport	
Network	NPDU, Packet	• Network	
Datalink	DPDU, Frame	 Datalink 	
Physical	PhPDU, Frame	 Physical 	

The Ohio State University

Connection-Oriented vs Connectionless

- Connection-Oriented: Telephone System
 - □ Path setup before data is sent
 - Data need not have address. Circuit number is sufficient.
 - □ Virtual circuits: Multiple circuits on one wire.
- Connectionless: Postal System. Also known as datagram.
 - □ Complete address on each packet
 - □ The address decides the next hop at each routing point

The Ohio State University



- □ Byte streams: user message boundaries are not preserved
- □ Request-reply: The reply serves as an acknowledgement also
- Message oriented or byte oriented approach can be used for unreliable connection-oriented communication

The Ohio State University

Service Primitives

□ Indication = Interrupt

Unconfirmed service: No confirmation or response

The Ohio State University

TCP/IP Reference Model

- **TCP** = Transport Control Protocol
- □ IP = Internet Protocol (Routing)
- TCP/IP Ref Model TCP/IP Protocols

OSI Ref Model

	Application		FTP		Telnet		HTTP		Application			
									Presentation			
	Transport		ТСР			Γ	מרוד		Session			
							UDP		Transport			
	Internetwork		IP						Network			
	Host to		Ether	Pa	Packet Radio	Point-to Point	oint-to-		Datalink			
	Network		net	R			Point		Physical			
Th	The Ohio State University Raj Jain											

OSI vs TCP Reference Models

OSI introduced concept of services, interface, protocols These were force-fitted to TCP later

 \Rightarrow It is not easy to replace protocols in TCP.

- In OSI, reference model was done before protocols.
 In TCP, protocols were done before the model
- OSI: Standardize first, build later
 TCP: Build first, standardize later
- OSI took too long to standardize. TCP/IP was already in wide use by the time.
- □ OSI become too complex.
- **TCP/IP** is not general. Ad hoc.

- Networking is growing exponentially
- Communication, Networks, and Distributed systems
- □ ISO/OSI's 7-layer reference model
- **TCP/IP** has a 4-layer model
- DU, SAP, Request, Indication

Reading Assignment

Read Chapter 1 of Tanenbaum, particularly, Sections 1.2-1.4
 Homework: Problems 9, 17