

$\begin{array}{cccccccccccccccccccccccccccccccccccc$

Modulo 2 D	vision	
Q= <u>1101010110</u> P=110101)101000110100000=2 ⁿ M <u>110101</u> 111011 <u>110101</u> 011101 <u>0000000</u> 1110101 011111 <u>0000000</u> 111110 <u>110101</u>	010110 000000 101100 <u>110101</u> 110010 <u>110101</u> 001110 <u>000000</u> 01110 = R	
The Ohio State University		Raj Jain

Checking A	t The Recei	ver
1101010110		
110101)1010001101 <mark>01110</mark>		
<u>110101</u>		
111011	010111	
<u>110101</u>	000000	
011101	101111	
<u>000000</u>	110101	
111010	110101	
<u>110101</u>	<u>110101</u>	
011111	00000	
<u>000000</u>		
111110		
110101		
The Ohio State University		Raj Jain

Cyclic Redundancy Check (CRC) Polynomial Division Method Make T(x) divisible by $P(x) = x^5 + x^4 + x^2 + 1$ (Note: n=5) **Example**: M=1010001101 is to be sent $M(x) = x^9 + x^7 + x^3 + x^2 + 1$ 1. Multiply M(x) by x^n , $x^n M(x) = x^{14} + x^{12} + x^8 + x^7 + x^5 + \dots$ 2. Divide $x^n M(x)$ by P(x), find remainder: $R(x) = 01110 = x^3 + x^2 + x$ The Ohio State University Raj Jain

Deputies CRC Polynomials $CRC-12: x^{12}+x^{11}+x^3+x^2+x+1$ $CRC-16: x^{16}+x^{15}+x^2+1$ $CRC-CCITT: x^{16}+x^{12}+x^5+1$ $CRC-32: \text{ Ethernet, FDDI, ...} x^{32}+x^{26}+x^{23}+x^{22}+x^{16}+x^{12}+x^{11}+x^{10}+x^8+x^7+x^5+x^4+x^2+x+1$ Even number of terms in the polynomial $\Rightarrow \text{ Polynomial is divisible by 1+x} \\ \Rightarrow \text{ Will detect all odd number of bit errors}$ The Ohio State University Raj Jain

