

Circuit vs Datagram vs VC

Circuit Switching	Datagram	Virtual Circuit			
Dedicated transmission path	No dedicated path	No dedicated path, Shared path			
Continuous transmission of data	Bursty	Bursty			
No buffering required	Buffers required	Buffers required			
Path fixed at connection setup	Different packets may take different	Path fixed at connection setup			
	paths				
Call setup delay	Queueing delays	Call setup + queueing delays			
Overload blocks new calls	Overload increases queueing delays	Overload may block new calls. May			
		increase queueing delays			
Source and destination have the	Source and destination may have	Source and destination may have			
same speed	different speed	different speed			
Bandwidth is reserved. Unused	Bandwidth is dynamically shared	Bandwidth is reserved as well as			
bandwidth is wasted	among users	dynamically shared			
No overhead bits after call setup	Overhead bits in each packet	Less overhead bits in each packet			
Switches keep state	Switches donot keep state	Switches keep state			
No or negligible loss	Loss possible	Loss possible			
On link failure	Connection continues	VC broken			
The Ohio State University	Table 8.1	Raj Jain			
	8-4				

Rooting or Routing

- Rooting is what fans do at football games, what pics do for truffles under oak trees in the Vaucluse, and what nursery workers intent on propagation do to cuttings from plants.
- Routing is how one creates a beveled edge on a table top or sends a corps of infanctrymen into full scale, disorganized retreat

Ref: Piscitello and Chapin, p413

8-7

Raj Jain

Routeing or Routing

- Routeing: British
- □ Routing: American
- Since Oxford English Dictionary is much heavier than any other dictionary of American English, British English generally prevalis in the documents produced by ISO and CCITT; wherefore, most of the international standards for routing standards use the routeing spelling.

Ref: Piscitello and Chapin, p413

The Ohio State University

Raj Jain

Routing Techniques Elements

- Performance criterion: *Hops*, Distance, *Speed*, Delay, Cost
- **Decision time**: *Packet*, session
- **Decision place**: *Distributed*, centralized, Source
- Network information source: None, local, *adjacent* nodes, nodes along route, all nodes
- **Routing strategy**: Fixed, *adaptive*, random, flooding
- Adaptive routing update time: Continuous, *periodic*, topology change, major load change

8-9

The Ohio State University

Raj Jain

Dijkstra's Algorithm Goal: Find the least cost paths from a given node to all other nodes in the network Notation: d_{ij} = Link cost from i to j if i and j are connected D_n = Total path cost from s to n M = Set of nodes so far for which the least cost path is known Method: Initialize: M={s}, D_n = d_{sn} Find node w ∉ M, whose Dn is minimum Update D_n

	Example (Cont)										
	Μ	D2	Path	D3	Path	D4	Path	D5	Path	D6	Path
1	{1}	2	1-2	5	1-3	1	1-4	∞	-	∞	-
2	{1,4}	2	1-2	4	1-4-3	1	1-4	2	1-4-5	~	-
3	{1,2,4}	2	1-2	4	1-4-3	1	1-4	2	1-4-5	~~	-
4	{1,2,4,5}	2	1-2	3	1-4-5-3	1	1-4	2	1-4-5	4	1-4-5-6
5	{1,2,3,4,5}	2	1-2	3	1-4-5-3	1	1-4	2	1-4-5	4	1-4-5-6
6	{1,2,3,4,5,6}	2	1-2	3	1-4-5-3	1	1-4	2	1-4-5	4	1-4-5-6
The Ohio State University Table 8.4a B								Raj Jain			

	Example (Cont)									
h	D ^(h) 2	Path	D ^(h) 3	Path	D ^(h) _4	Path	D ^(h) 5	Path	D ^(h) 6	Path
0	∞	-	∞	-	∞	-	∞	-	∞	-
1	2	1-2	5	1-3	1	1-4	∞	-	∞	-
2	2	1-2	4	1-4-3	1	1-4	2	1-4-5	10	1-3-6
3	2	1-2	3	1-5-4-3	1	1-4	2	1-4-5	4	1-4-5-6
4	2	1-2	3	1-5-4-3	1	1-4	2	1-4-5	4	1-4-5-6
The Ohio State University Table 8.4b								Raj Jai		

ARPAnet Routing (1987+)

□ Problem with 2nd Method: Correlation between delays reported and those experienced later : High in light loads, low during heavy loads ⇒ Oscillations under heavy loads ⇒ Unused capacity at some links, over-utilization of others, More variance in delay more frequent updates More overhead

