ATM Networks: An Overview

Raj Jain

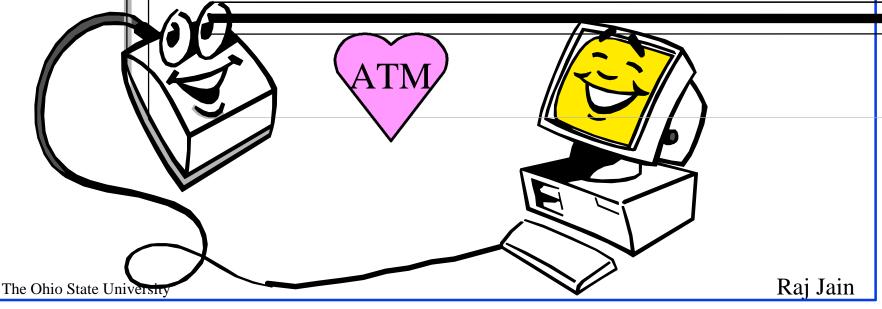
Professor of Computer and Information Sciences

Raj Jain is now at Washington University in Saint Louis Jain@cse.wustl.edu

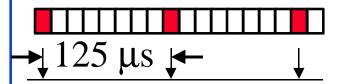
http://www.cse.wustl.edu/~jain/

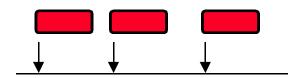
The Ohio State University

- □ ATM vs Phone Networks and Data Networks
- ATM Protocol Layers
- Cell Header Format, AALs
- Physical Media


The Ohio State University

Raj Jain


2


ATM

- Asynchronous Transfer Mode
- □ ATM|Net = Data Net + Phone Net
- □ Combination of Internet method of compunication (packet switching) and phone compunies' method (circuit switching)

ATM vs Phone Networks

- □ Current phone networks are synchronous (periodic).
 ATM = Asynchronous Transfer Mode
- □ Phone networks use circuit switching.

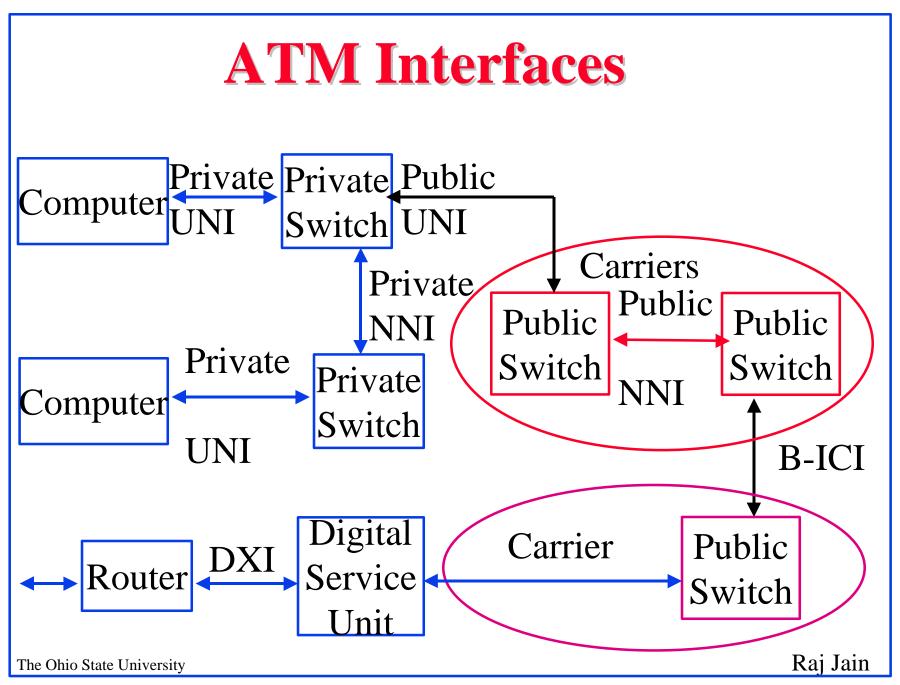
 ATM networks use "Packet" Switching
- □ In phone networks, all rates are multiple of 8 kbps. With ATM service, you can get any rate. You can vary your rate with time.
- With current phone networks, all high speed circuits are manually setup. ATM allows dialing any speed, Jain

ATM vs Data Networks

- □ Signaling: Internet Protocol (IP) is connectionless.
 - You cannot reserve bandwidth in advance.
 - ATM is connection-oriented.
 - You declare your needs before using the network.
- □ PNNI: Path based on quality of service (QoS)
- □ Switching: In IP, each packet is addressed and processed individually.
- □ Traffic Management: Loss based in IP.
 ATM has 1996 traffic management technology.
 Required for high-speed and variable demands.
- Cells: Fixed size or small size is not important

 The Ohio State University

Old House vs New House



□ New needs:

Solution 1: Fix the old house (cheaper initially)

Solution 2: Buy a new house (pays off over a long run)

ATM Interfaces

- User to Network Interface (UNI): Public UNI, Private UNI
- □ Network to Node Interface (NNI):
 - Private NNI (P-NNI)
 - Public NNI =Inter-Switching System Interface (ISSI)
 Intra-LATA ISSI (Regional Bell Operating Co)
 - Inter-LATA ISSI (Inter-exchange Carriers)
 - ⇒ Broadband Inter-Carrier Interface (B-ICI)
- Data Exchange Interface (DXI)
 Between routers and ATM Digital Service Units (DSU)

Protocol Layers

End System

End System

ATM

Adaptation

Layer

ATM

Layer

Physical

Layer

Switch

ATM

Layer

Physical

Layer

ATM

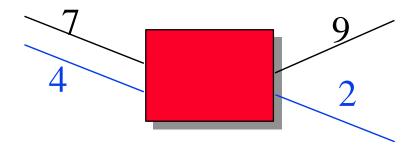
Adaptation

Layer

ATM

Layer

Physical


Layer

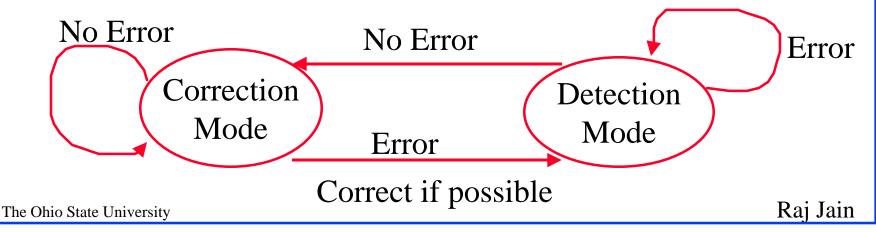
The Ohio State University

Protocol Layers

- □ The ATM Adaptation Layer
 - How to break messages to cells
- □ The ATM Layer
 - Transmission/Switching/Reception
 - Congestion Control/Buffer management
 - Cell header generation/removal at source/destination
 - Cell address translation
 - Sequential delivery

Virtual Circuit Switching

- □ Circuit Switching: bits coming on wire 4 go on wire 2
- □ Virtual Circuit Switching: Cells coming on VCI=4 go on VCI=2


Cell Header Format

- □ GFC = Generic Flow Control
 - (Was used in UNI but not in NNI)
- □ VPI/VCI = $0/0 \Rightarrow$ Idle cell; $0/n \Rightarrow$ Signaling

GFC/VPI	VPI				
VPI	VCI				
VCI					
VCI	PTI	CLP			
Header Error Check (HEC)					
Payload					

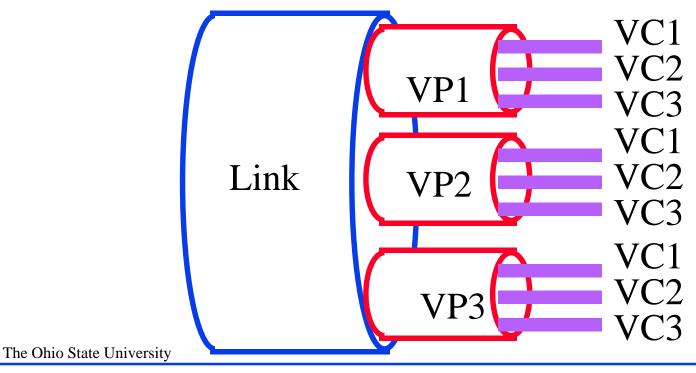
Header Error Check (HEC)

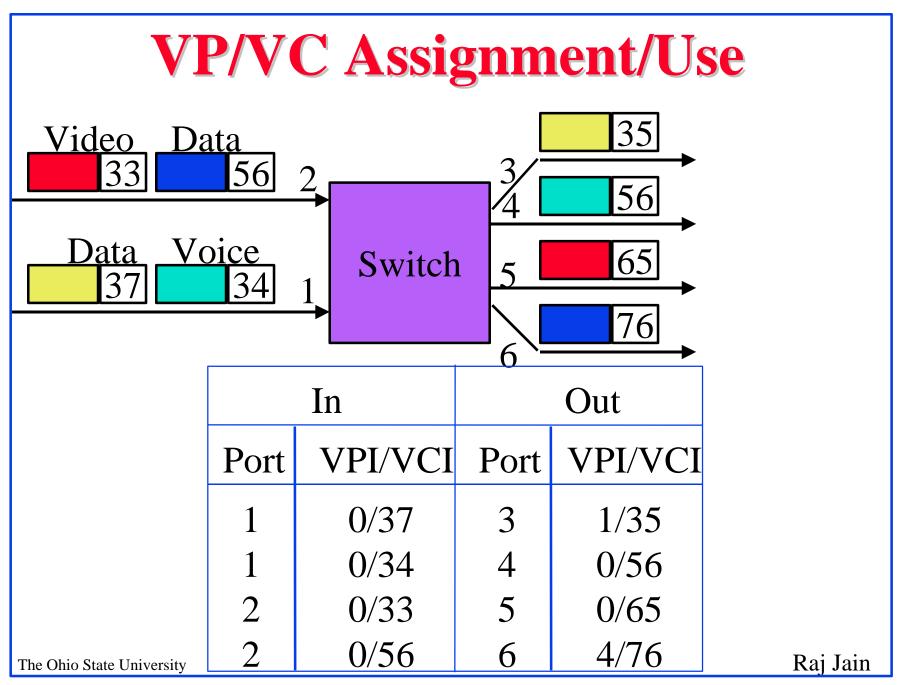
- $\Box 1 + x + x^2 + x^8$
- Protects header only
- Optional Correction mode: Correct one bit errors if no earlier errors
- Discard cells with bad HEC
- Recalculated on each hop

Payload Type Field Coding

- $\supset 000$ User data cell, no congestion, AAU = 0
- \bigcirc 001 User data cell, no congestion, AAU = 1
- \bigcirc 010User data cell, congestion, AAU = 0
- □ 011 User data cell, congestion, AAU = 1
- □ 100 Segment Operation and management (OAM) cell
- □ 101 End-to-end OAM cell
- □ 110Resource management cell
- □ 111 Reserved

ATM-user-to-ATM-user (AAU) bit available for user-to-user indication

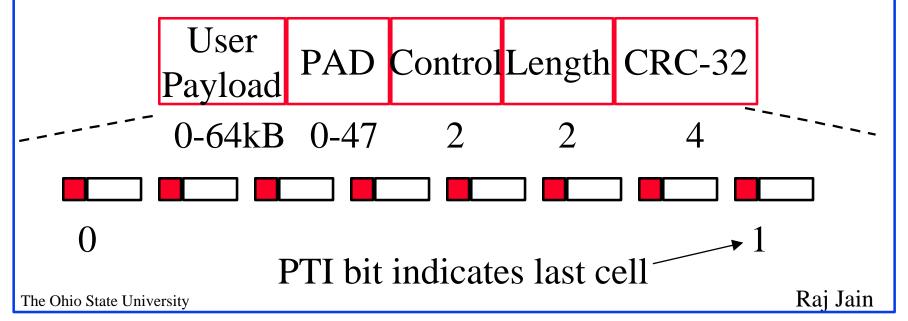

Path vs Channels


□ 24/28-bit connection identifier

First 8/12 bits: Virtual Path,

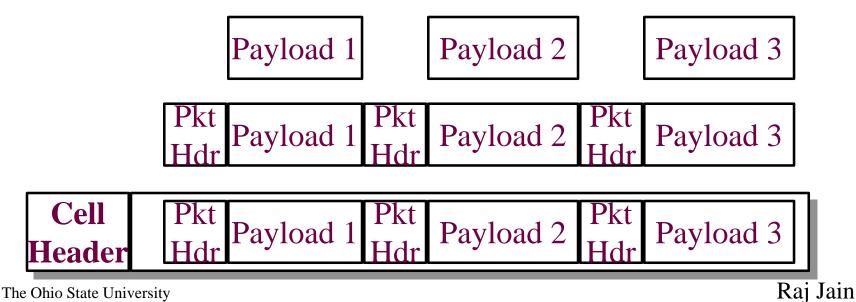
Last 16 bits: Virtual Circuit

□ VP service allows new VC's w/o orders to carriers



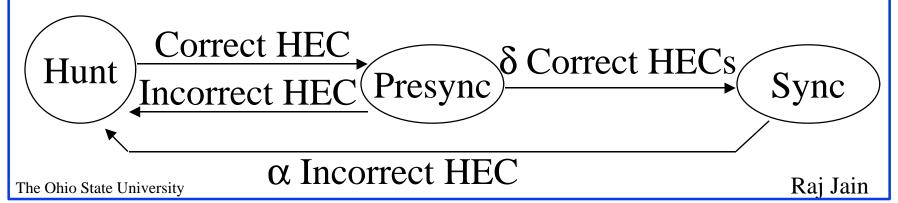
Original Classes of Traffic

	Class A	Class B	Class C	Class D
Time Sync	Yes	Yes	No	No
Bit Rate	Constant	Variable	Variable	Variable
Connection	Yes	Yes	Yes	No
-Oriented				
Examples	Circuit	Comp.	Frame	SMDS
	Emulation	Video	Relay	
AAL	AAL1	AAL2	AAL3	AAL4

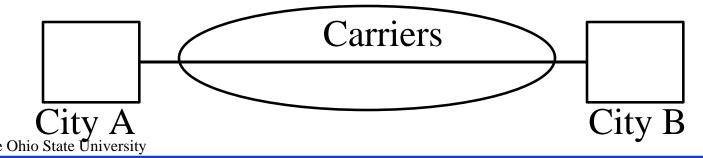

AAL 5

- Designed for data traffic
- □ Less overhead bits than AAL 3/4
 - ⇒ Simple and Efficient AAL (SEAL)
- □ No per cell length field, No per cell CRC

AAL2


- Ideal for low bit rate voice
- Variable/constant rate voice
- Multiple users per VC
- Compression and Silence suppression
- □ Idle channel suppression

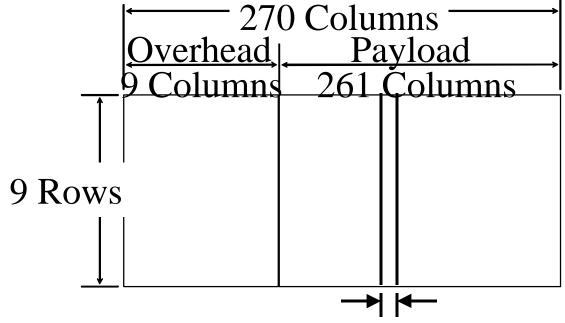
Cell-Stream Phy



- Continuous stream of cells. No framing.
- □ Hunt bit-by-bit for correct header.
- \square Look for δ correct headers before entering synch state
- \square α incorrect headers \Rightarrow resynchronize α and δ are parameters.

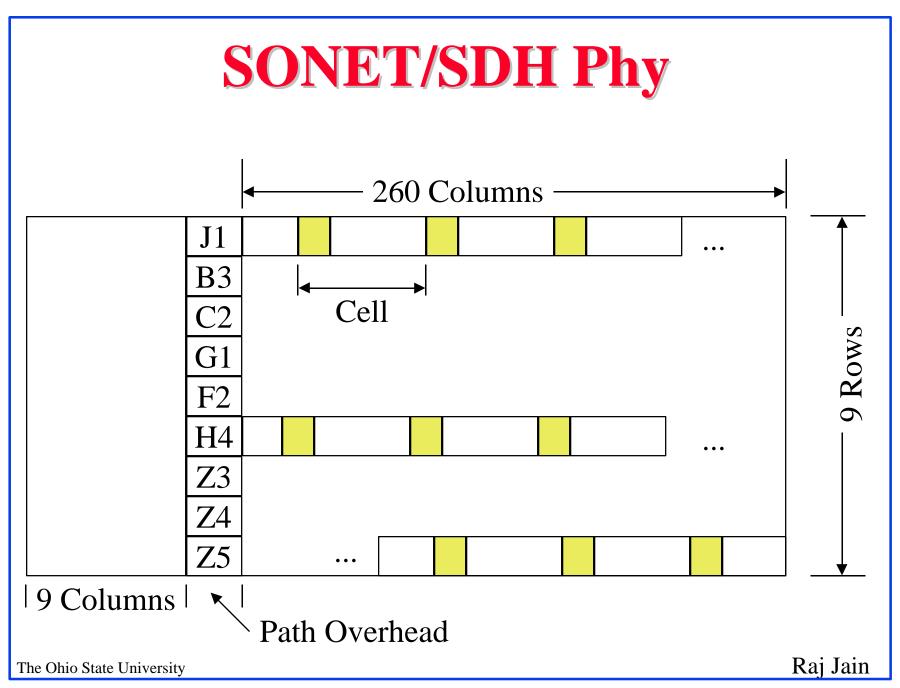
SONET

- Synchronous optical network
- Standard for digital optical transmission (bit pipe)
- Developed originally by Bellcore.
 Standardized by ANSI T1X1
 Standardized by CCITT
 - ⇒ Synchronous Digital Hierarchy (SDH)
- ☐ You can lease a SONET connection from carriers


Signal Hierarchy

Synchronous Transport Signal Level $n = STS-n = n \times 51.84$ Mbps STM=Synchronous Transport Module, OC=Optical Carrier level

ANSI	Optical	CCITT	Data Rate	Payload Rate
Designation	Signal	Designation	(Mbps)	(Mbps)
STS-1	OC-1		51.84	50.112
STS-3	OC-3	STM-1	155.52	150.336
STS-9	OC-9	STM-3	466.56	451.008
STS-12	OC-12	STM-4	622.08	601.344
STS-18	OC-18	STM-6	933.12	902.016
STS-24	OC-24	STM-8	1244.16	1202.688
STS-36	OC-36	STM-12	1866.24	1804.032
STS-48	OC-48	STM-16	2488.32	2405.376
STS-96	OC-96	STM-32	4976.64	4810.176
STS-192	OC-192	STM-64	9953.28	9620.928


STS-3c Frame Format

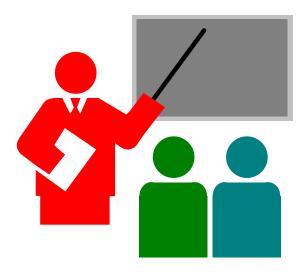
- □ STS-3c is similar to STM-1
- \square 125 µs = 2430 bytes at 155.54 Mbps

Path Overhead

Note: All sizes are multiples of 3

SONET STS-3c

- \square Payload rate = 9 \times 260 \times 8/125 = 149.76 Mbps
- □ Cell payload rate = 135.63 Mbps
- Cell delineation using HEC.
 - Look for 5-byte blocks with HEC separated by 48 bytes
- □ Cells are packed one after another ⇒ One can send
 127 bits matching the scrambling sequence resulting in all 1's or 0's.


Scramble by dividing by $1 + x^{43}$.

Only one in 2^{43} patterns will cause all 1's or 0's.

Physical Media

- Multimode Fiber: 100 Mbps using 4b/5b, 155 Mbps SONET STS-3c, 155 Mbps 8b/10b
- □ Single-mode Fiber: 155 Mbps STS-3c, 622 Mbps
- □ Plastic Optical Fiber: 155 Mbps
- □ Shielded Twisted Pair (STP): 155 Mbps 8b/10b
- □ Coax: 45 Mbps, DS3, 155 Mbps
- Unshielded Twisted Pair (UTP)
 - UTP-3 (phone wire) at 25.6, 51.84, 155 Mbps
 - UTP-5 (Data grade UTP) at 155 Mbps
- □ DS1, DS3, STS-3c, STM-1, E1, E3, J2, n × T1

Summary

- □ ATM Overview: History, Why and What
- □ Protocol Layers: AAL, ATM, Physical layers, Cell format
- □ Interfaces: PNNI, NNI, B-ICI, DXI

Homework

- □ Read Sections 11.1-11.6 of Stallings's sixth edition
- □ Submit answer to Exercise 11.3