

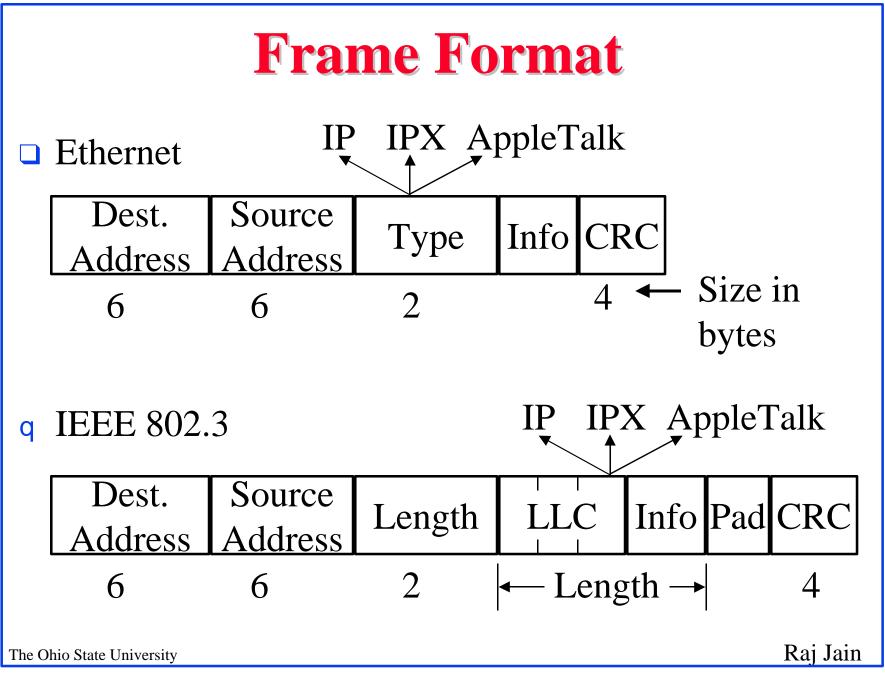


- Logical Link Control
- Bridges
- □ Path determination: Spanning tree, source routing

#### **IEEE 802**

- 802.1 Network management and bridging
- □ 802.2 Logical link control
- □ 802.3 Ethernet (CSMA/CD)
- **3** 802.4 Token Bus
- □ 802.5 Token Ring
- **802.6 DQDB**
- 802.7 Broadband technical advisory group
- □ 802.8 Fiber-optic technical advisory group
- □ 802.9 Integrated data and voice
- **BO2.10 Security and privacy**

### IEEE 802 (Cont)


- 802.11 Wireless LANs
- □ 802.12 100VG-AnyLAN
- □ 802.13 ?Bad Luck
- **802.14**

The Ohio State University

#### **IEEE 802 Address Format**

= 80:01:43:00:80:0C

| Organizationally Unique<br>Identifier (OUI)24 bits assigned by<br>OUI OwnerIndividual/<br>GroupLocal0UI Owner |  |  |  |  |  |  |  |  |  |  |
|---------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|--|--|--|
| 1 1 22 24                                                                                                     |  |  |  |  |  |  |  |  |  |  |
| Multicast = "To all bridges on this LAN"                                                                      |  |  |  |  |  |  |  |  |  |  |
| Broadcast = "To all stations"                                                                                 |  |  |  |  |  |  |  |  |  |  |
| = 111111111 = FF:FF:FF:FF:FF:FF                                                                               |  |  |  |  |  |  |  |  |  |  |
| The Ohio State University Raj Jain                                                                            |  |  |  |  |  |  |  |  |  |  |



# LLC Type 1

 Unacknowledged connectionless (on 802.3) No flow or error control.
 Provides protocol multiplexing.
 Uses 3 types of protocol data units (PDUs):
 UI = Unnumbered informaton
 XID = Exchange ID

 Types of operation supported, window
 Test = Loop back test

# LLC Type 2, 3

- Type 2: Acknowledged connection oriented (on 802.5)
   Provides flow control, error control. Uses
   SABME (Set asynchronous balanced mode), UA
   (unnumbered ack), DM (disconneced mode), DISC
   (disconnect)
- Type 3: Acknowledged connectionless
   Uses one-bit sequence number
   AC command PDUs acked by AC response PDUs

# **LLC Multiplexing**

- Multiplexing allows multiple users (network layer protocols) to share a datalink
- Each user is identified by a "service access point (SAP)"

  DSAP
  SSAP
  Control
  Info
- q Eight-bit SAP
  - $\Rightarrow$  Only 256 standard values possible

8

q Even IP couldn't get a standard SAP.Use Subnetwork Access Protocol SAP (SNAP SAP)

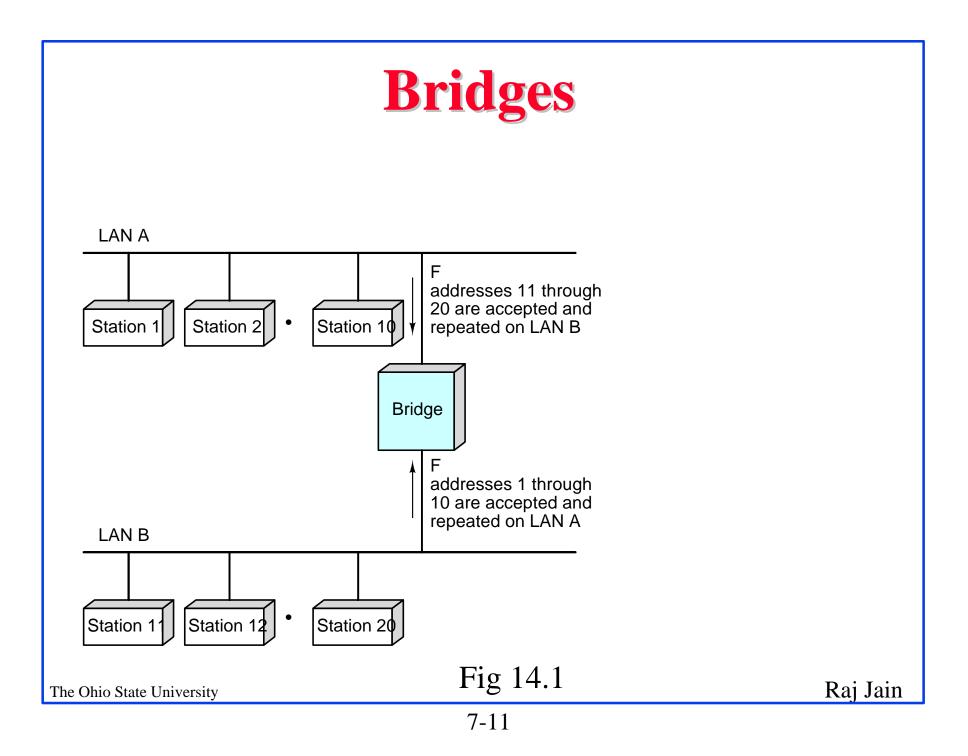
Size in bits

8

8

### **SNAP SAP**

- SubNetwork Access Protocol Service Access Point
- When DSAP=AA, SSAP=AA, Control=UI, protocol ID field is used for multiplexing


DSAP SSAP Control

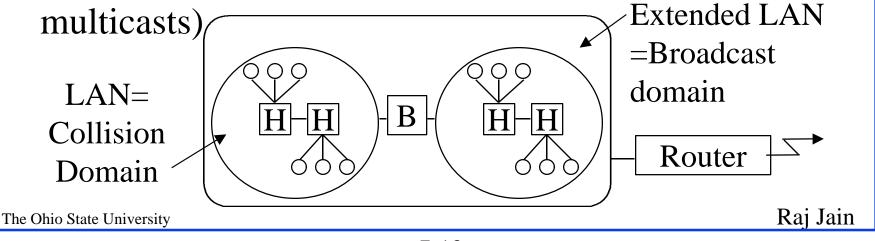
|--|

#### 40 bits

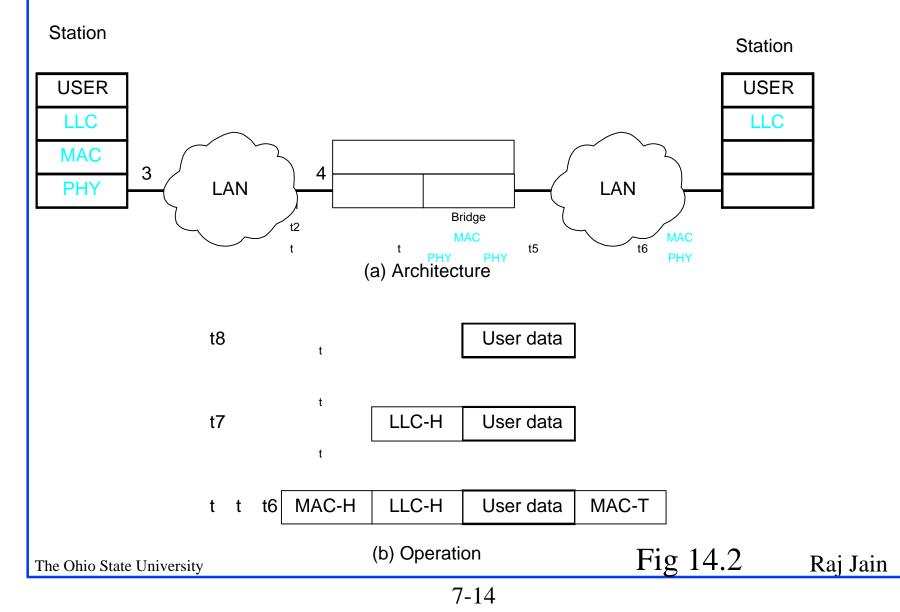
Protocol ID is 40 bit long. The first 24 bits are
Organizationally Unique Identifiers (OUI). OUI of 0 is used. The Ethernet type values are used in the last 16 bits.

Protocol ID = 00-00-00-xx-xx The Ohio State University

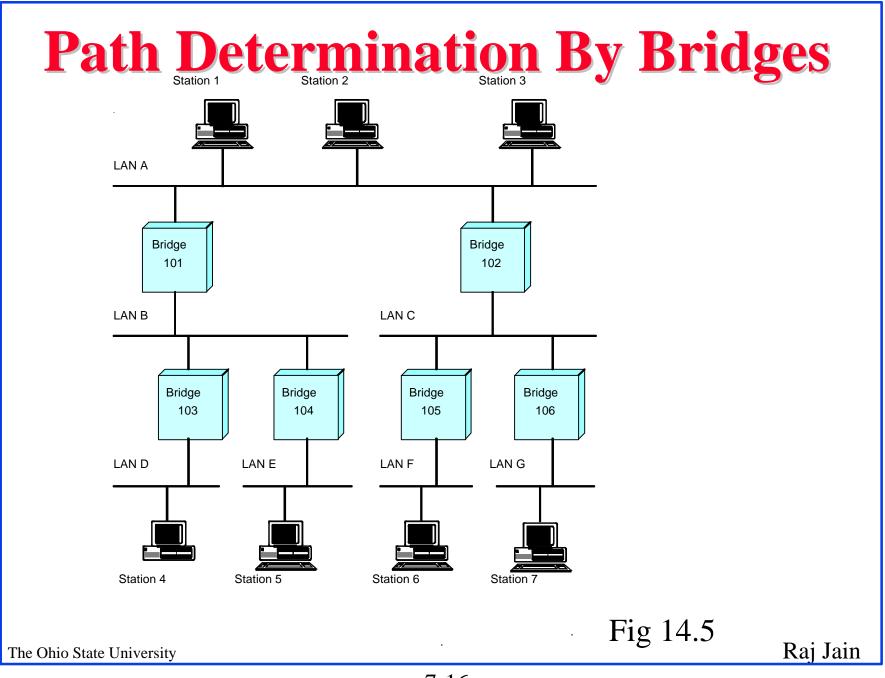



# **Bridge: Functions**

- Monitor all frames on LAN A
- □ Pickup frames that are for stations on the other side
- **Retransmit the frames on the other side**
- □ Knows or learns about stations are on various sides
- Makes no modification to content of the frames.
   May change headers.
- □ Provides storage for frames to be forwarded
- □ Improves reliability (less nodes per LAN)
- □ Improves performance (more bandwidth per node)
- □ Security (Keeps different traffic from entering a LAN)
- □ May provide flow and congestion control


The Ohio State University

### **Interconnection Devices**

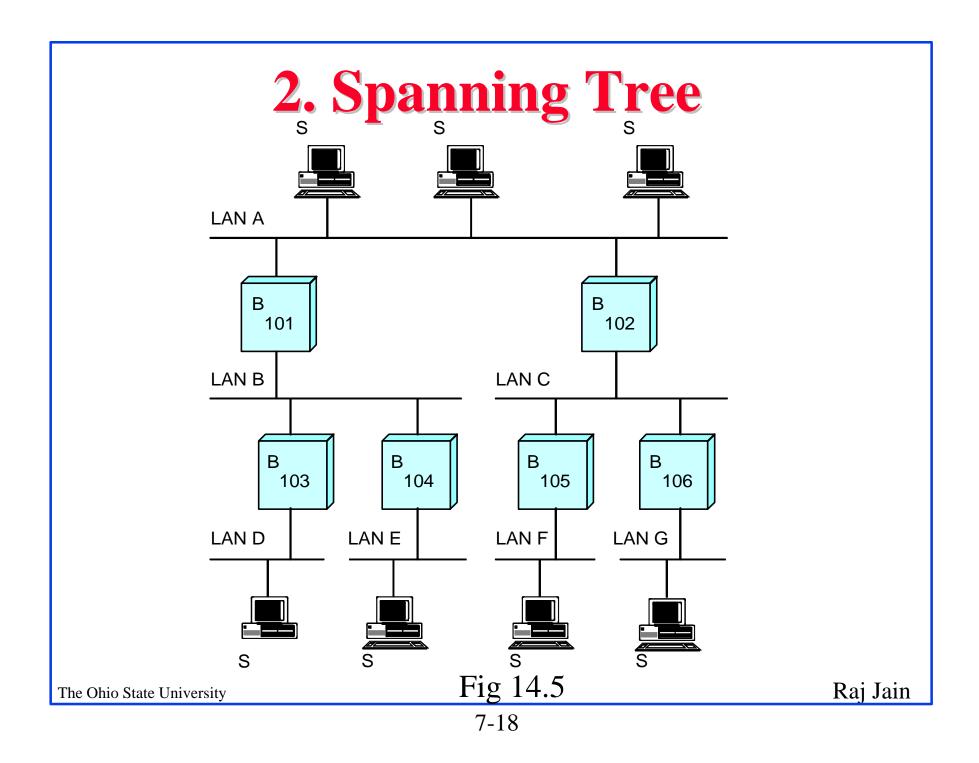

- **Repeater**: PHY device that restores data and collision signals
- Hub: Multiport repeater + collision detection, notification and signal broadcast
- Bridge: Datalink layer device connecting two or more collision domains
- **Router:** Network layer device (does propagate MAC

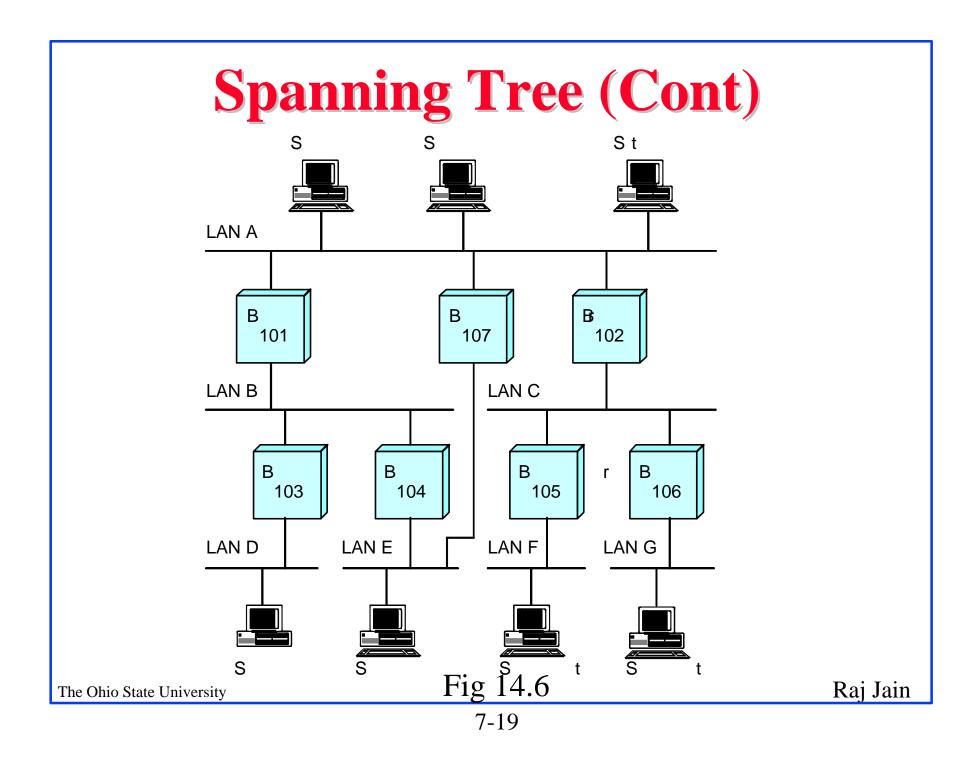


# **Data Encaptulation by Bridges**



#### **Bridges for Point-to-point links** Station USER USER Bridge Bridge 9 1 LLC LLC 2 8 **MAC** MAC Link Link LAN LAN (a) Architecture User data LLC-H User data MAC-H LLC-H User data LLC-T Link-H MAC-H LLC-H User data LLC-T Link-T (b) Operation Fig 14.3 Raj Jain The Ohio State University



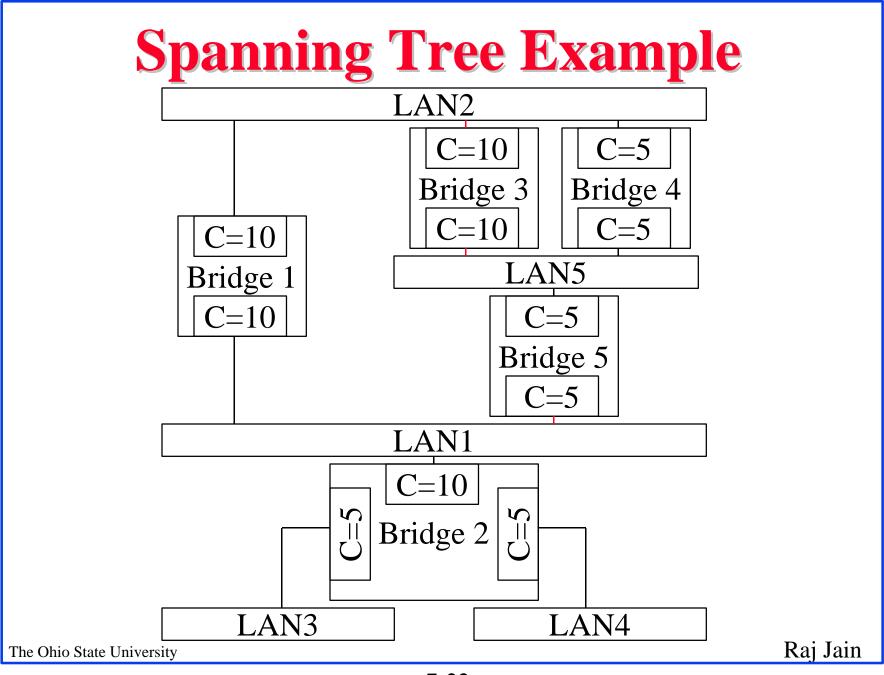


#### **1. Fixed Routing**

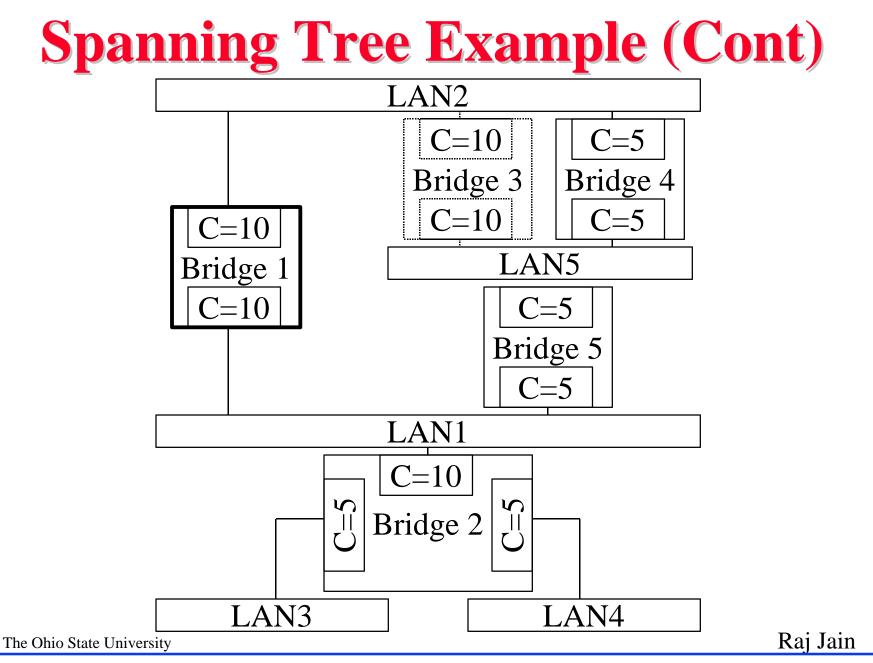
#### **Central Routing Matrix**

Destingtion TAN

|                |        |       | Desti  | nation | LAN |     |     |                       | Rudes         | 101 tab                  |                     | n           |                       |                            |                |                  |               |                     |                       |
|----------------|--------|-------|--------|--------|-----|-----|-----|-----------------------|---------------|--------------------------|---------------------|-------------|-----------------------|----------------------------|----------------|------------------|---------------|---------------------|-----------------------|
|                | Α      | B     | С      | D      | Ε   | F   | G   | fror                  | m LAN A       |                          | LAN B               | from LA     | N A                   | 02 tabl                    | e<br>LAN C     | Francis 1        | Bridge        | 103 tabl            |                       |
| A              | -      | 101   | 102    | 101    | 107 | 102 | 102 | Des<br>B              | n Next<br>B   |                          |                     |             | Nexi                  | Dest<br>A                  | Next<br>A      | Dest<br>A        | LAN B<br>Nexi | Dest<br>A           | LAN [<br>Nex:<br>B    |
| B              | 101    | -     | 101    | 103    | 104 | 101 | 101 | C<br>D<br>E<br>F      | B<br>-        | D<br>E                   |                     | D<br>E -    | C<br>-<br>-           | B<br>D<br>E                | A<br>A<br>A    | C<br>D<br>E<br>F | D<br>-        | B<br>C<br>E<br>F    | B<br>B<br>B<br>B<br>B |
| z <sup>C</sup> | 102    | 102   | -      | 102    | 102 | 105 | 106 | Ğ                     | -             | F<br>G                   | A<br>A              | F<br>G      | C<br>C                | F<br>G                     | -              | F<br>G           | -             | F<br>G              | B<br>B                |
| Source LAN     | 103    | 103   | 103    | -      | 103 | 103 | 103 | fron<br>Des           | n LAN B       | 104 tabi<br>from<br>Dest | le<br>LAN E<br>Next | from LA     | idge 1<br>N C<br>Next | 05 table<br>from 1<br>Dest | LAN F          | from I           | LANC          | 106 table<br>from I | LAN G                 |
| nos E          | 107    | 104   | 107    | 104    | -   | 107 | 107 | A<br>C                | -             | A<br>B                   | B                   | A<br>B      | -                     | A<br>B                     | Next<br>C<br>C | Dest<br>A<br>B   | Next<br>      | Dest<br>A<br>B      | Next<br>C<br>C        |
| F              | 105    | 105   | 105    | 105    | 105 | -   | 105 | DEF                   | Ē             | C D F                    | B                   | D<br>E<br>F | -<br>-<br>F           | C<br>D<br>E<br>G           | CCC            | D<br>E<br>F      |               | C<br>D<br>E         | 00000                 |
| G              | 106    | 106   | 106    | 106    | 106 | 106 | -   | O                     | -<br>Bridge   | G<br>107 tabl            | -<br>e              | G           | -                     | G                          | Ċ              | Ğ                | G             | F                   | C                     |
|                |        |       |        |        |     |     |     | Dest                  | LAN A<br>Next | from<br>Dest<br>A        | LAN E<br>Next<br>A  |             |                       |                            |                |                  |               |                     |                       |
|                |        |       |        |        |     |     |     | B<br>C<br>D<br>E<br>F | -             | B<br>C                   | Ā                   |             |                       |                            |                |                  |               |                     |                       |
|                |        |       |        |        |     |     |     | Б<br>F<br>G           | E<br>-<br>-   | D<br>F<br>G              | Ā                   |             |                       |                            |                |                  |               |                     |                       |
|                |        |       |        |        |     |     |     |                       |               | _                        |                     |             |                       |                            |                |                  |               |                     |                       |
|                |        |       |        |        |     |     |     |                       |               |                          |                     |             |                       |                            |                |                  |               |                     |                       |
|                |        |       |        |        |     |     |     |                       | <b>T</b> .,   | 1                        | 1 7                 |             |                       |                            |                |                  |               |                     |                       |
|                |        |       |        | •.     |     |     |     |                       | F1            | g 14                     | 4./                 |             |                       |                            |                |                  |               | ו גם                |                       |
| The Ol         | 110 St | ate U | nivers | sity   |     |     |     |                       |               | -                        |                     |             |                       |                            |                |                  |               | Raj J               | ain                   |
|                |        |       |        |        |     |     |     |                       |               | -                        | 1 –                 |             |                       |                            |                |                  |               |                     |                       |







# **Spanning Tree: Terminology**

- □ Bridge Identifier: MAC address plus a priority level
- □ Port identifier: For each port of a bridge
- □ Path cost: Cost transmitting through a port
- □ Root Bridge: The bridge with the lowest identifier
- □ Root port: Port with minimum cost to the root bridge
- □ Root path cost: Cost of the path to the root bridge
- Designated bridge: One per LAN. Provides minimum cost path from the LAN to the root bridge.
- Designated Port: Connects designated bridge to LAN

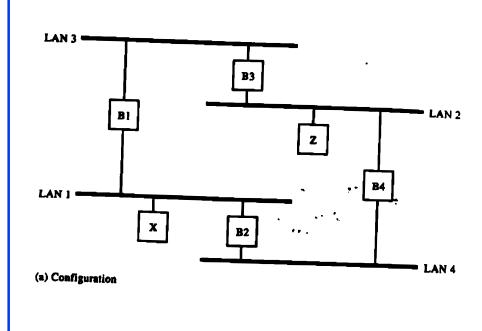
# **Spanning Tree Algorithm**

- □ All bridges multicast to "All bridges"
  - o My ID
  - Root ID
  - My cost to root
- The bridges update their info using Dijkstra's algorithm and rebroadcast
- Initially all bridges are roots but eventually converge to one root as they find out the lowest Bridge ID.
- On each LAN, the bridge with minimum cost to the root becomes the Designated bridge
- □ All ports of all non-designated bridges are blocked.

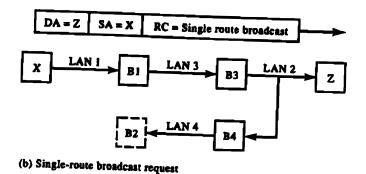


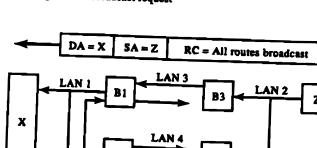


# **3. Source Routing**


- The frame header contains the complete route: LAN 1 - Bridge B1 - LAN 3 - Bridge B3 - LAN 2 - Dest
- □ Bridges are simple, end systems do the routing
- □ Four types of destination addressing:
  - Null: Destination on the same LAN
  - Non-broadcast: Includes a route to destination
  - All-route Broadcast: Flooded.
     Bridges record route in the frame.
  - Single-route Broadcast: Once and only once on each LAN. Spanning tree used for broadcast

## **Route Discovery**


- □ Manually on small internets
- **Route** server
- Dynamic route discovery
  - Transmit "All-route request frame" to destination The destination sends back "non-broadcast response" on each frame. Source knows all routes to the destination. Selects one.
  - Transmit "single-route request frame" to dest. The destination responds with one "All-routes response." The source receives many responses and discovers all routes.


The Ohio State University

#### Example



The Ohio State University





**B4** 

(c) All-routes broadcast response

**B2** 

Fig 14.12



- □ Ethernet bridges learn source addresses
- Spanning tree algorithm
- □ Token ring bridges use source route

#### Homework

- □ Read Section 13.7 of Stallings' sixth edition
- □ Submit answer to Exercise 13.10

The Ohio State University

