Introduction to Networking Protocols and Architecture

Raj Jain Professor of CIS

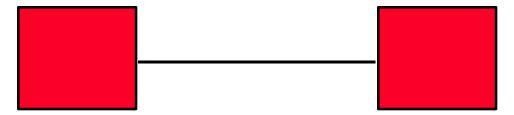
Raj Jain is now at Washington University in Saint Louis Jain@cse.wustl.edu

http://www.cse.wustl.edu/~jain/

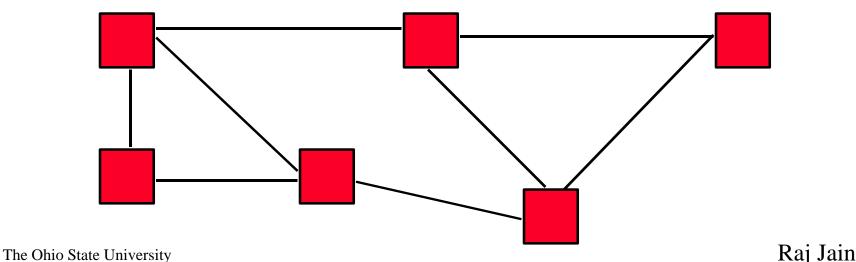
The Ohio State University

Raj Jain

- Data Comm vs Networking vs Distributed Systems
- Types of Networks
- Protocol Layers: OSI and TCP/IP Models
- Connection-oriented vs connectionless
- Layered packet format

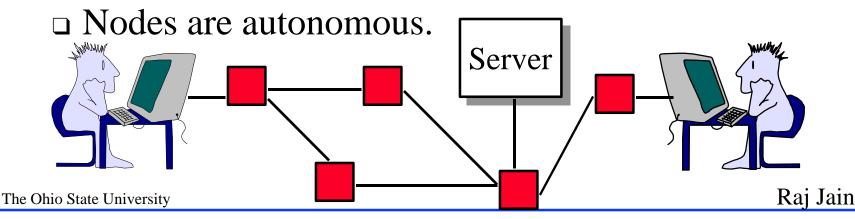

The Ohio State University

Raj Jain

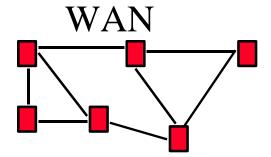

2-2

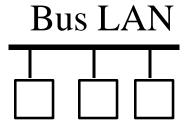
Data Communication vs Networking

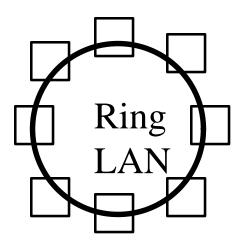
□ Communication: Two Nodes. Mostly EE issues.



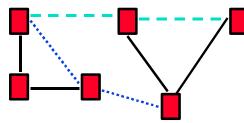
■ Networking: Two or more nodes. More issues, e.g., routing

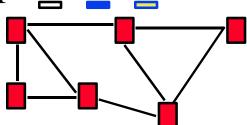

Distributed Systems vs Networks


- Distributed Systems:
 - □ Users are unaware of underlying structure. E.g., trn instead of \n\bone\0\trn
 - □ Mostly operating systems issues.
 - □ Nodes are generally under one organization's control.
- □ Networks: Users specify the location of resources. http://www.cis.ohio-state.edu/~jain/



Types of Networks


Point to point vs Broadcast



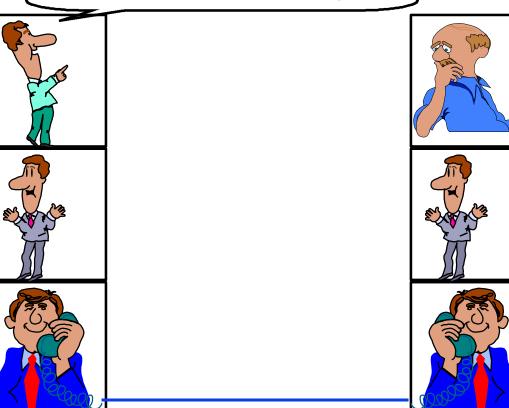
Circuit switched vs packet switched

□ Local Area Networks (LAN) 0-2 km,
 Metropolitan Area Networks (MAN) 2-50 km,
 Wide Area Networks (WAN) 50+ km

The Ohio State University

Raj Jain

Protocol Layers

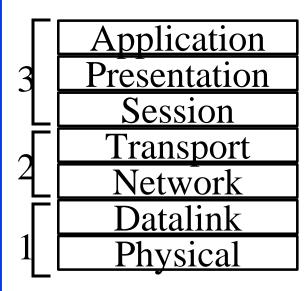

□ Problem: Philosophers in different countries speak different languages. The Telex system works only with English.

I believe there is a God!

Philosopher

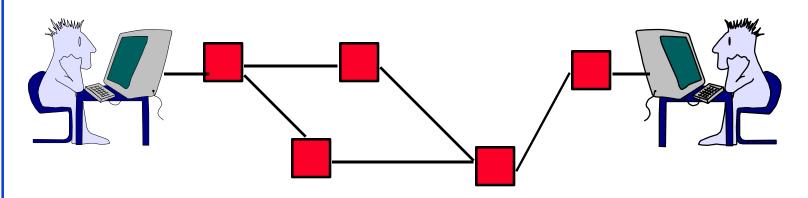
Translator

Secretary


The Ohio State University

Design Issues for Layers

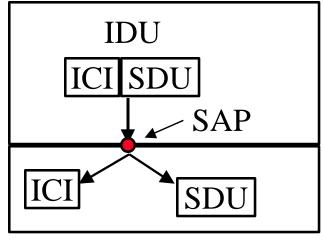
- Duplexity:
 - □ Simplex: Transmit or receive


- □ Full Duplex: Transmit and receive simultaneously
- □ Half-Duplex: Transmit and receive alternately
- Error Control: Error detection and recovery
- □ Flow Control: Fast sender

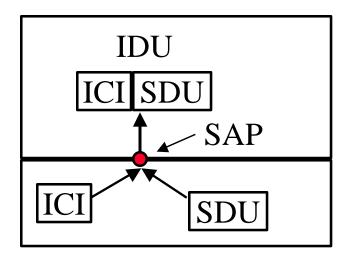
ISO/OSI Reference Model

File transfer, Email, Remote Login ASCII Text, Sound Establish/manage connection End-to-end communication: TCP Routing, Addressing: IP Two party communication: Ethernet How to transmit signal: Coding

Raj Jain

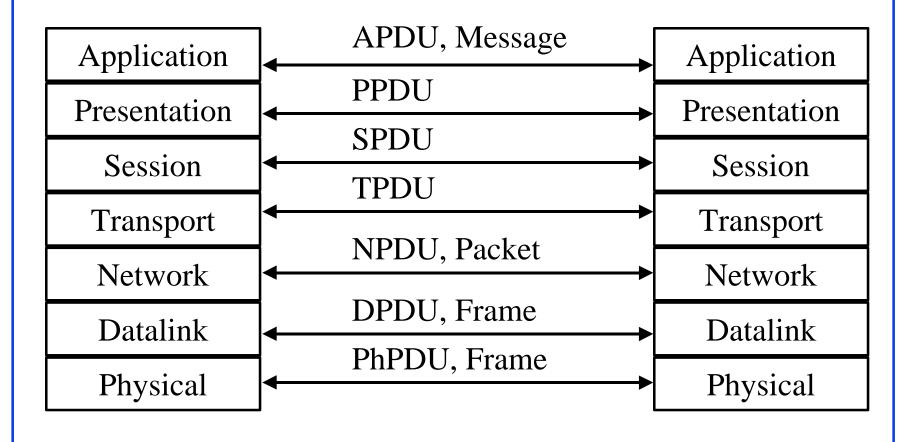

The Ohio State University

Layering

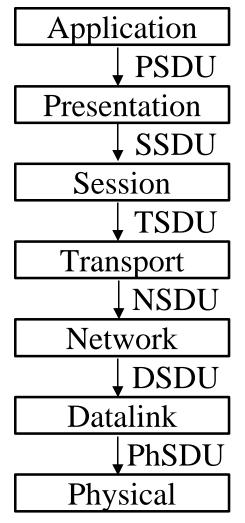

FTP	Telnet	Web	Email		
Trans (Control Prot	User Dat	User Datagram Prot		
Interne	et Protocol	Novell Ne	Novell Netware (IPX)		
Et	thernet	Toke	Token Ring		
C	lopper	F	Fiber		

- Protocols of a layer perform a similar set of functions
- □ All alternatives for a row have the same interfaces
- □ Choice of protocols at a layer is independent of those of at other layers. E.g., IP over Ethernet or token ring
- Need one component of each layer ⇒ Null components

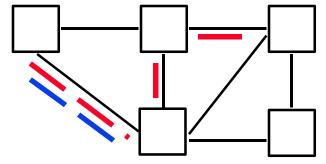
Interfaces and Services



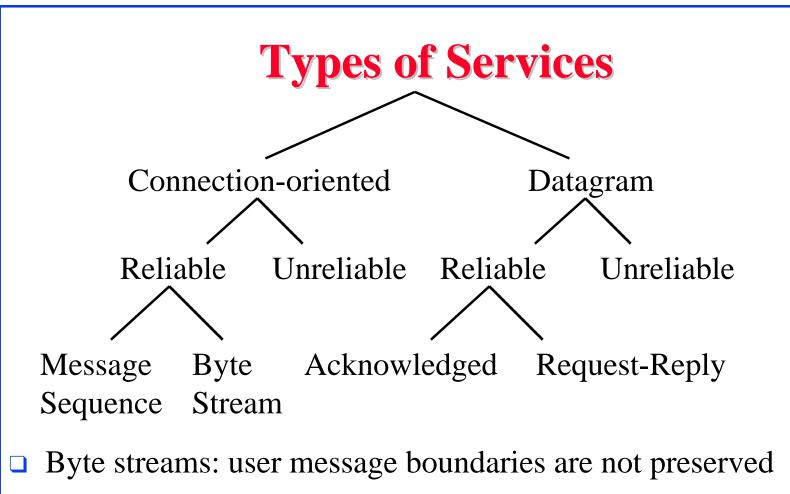
PDU Header SDU



- □ IDU = Interface Data Unit = ICI + SDU
- □ ICI = Interface Control Information
- □ SDU = Service Data Unit
- □ PDU = Protocol Data Unit = Fragments of SDU + Header or Several SDUs + Header (blocking)
- □ SAP = Service Access Point

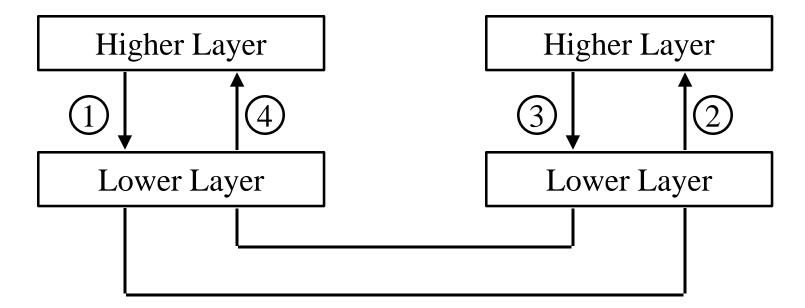

Protocol Data Unit (PDU)

Service Data Unit (SDU)



Connection-Oriented vs Connectionless

- Connection-Oriented: Telephone System
 - □ Path setup before data is sent
 - □ Data need not have address. Circuit number is used.
 - □ Virtual circuits: Multiple circuits on one wire.
- Connectionless: Postal System. Also known as datagram.
 - □ Complete address on each packet
 - □ The address decides the next hop at each routing point


The Ohio State University

- □ Request-reply: The reply serves as an acknowledgement also
- Message oriented or byte oriented approach can be used for unreliable connection-oriented communication

Service Primitives

□ Indication = Interrupt

1. Request

3. Response

2. Indication

4. Confirm

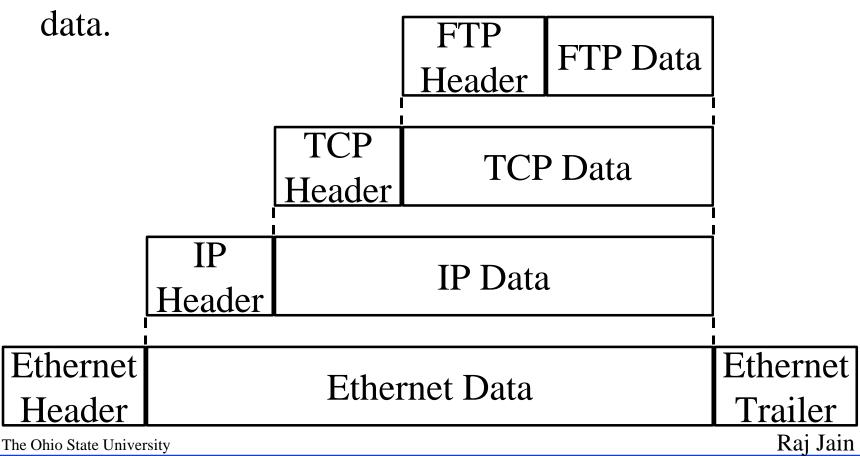
Unconfirmed service: No confirmation or response

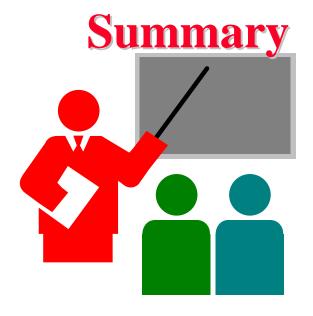
TCP/IP Reference Model

- □ TCP = Transport Control Protocol
- □ IP = Internet Protocol (Routing)

TCP/IP Ref Model TCP/IP Protocols **OSI** Ref Model

Application		ETD	Tolo	o.t	НТТР		Application	
Application		FTP	Tem	eı	ппг		Presentation	
Tuesday		TCD			UDP		Session	
Transport	TCI		CP				Transport	
Internetwork		IP					Network	
Host to		Ether	Packet	Point-	oint-to-		Datalink	
Network		net	Radio	Point		Physical		
Ohio State University Raj Jain								


The Ohio State University


OSI vs TCP Reference Models

- □ OSI introduced concept of services, interface, protocols. These were force-fitted to TCP later
 ⇒ It is not easy to replace protocols in TCP.
- □ In OSI, reference model was done before protocols. In TCP, protocols were done before the model
- □ OSI: Standardize first, build later
 TCP: Build first, standardize later
- □ OSI took too long to standardize. TCP/IP was already in wide use by the time.
- □ OSI become too complex.
- □ TCP/IP is not general. Ad hoc.

Layered Packet Format

■ Nth layer control info is passed as N-1th layer data.

- Communication, Networks, and Distributed systems
- □ ISO/OSI's 7-layer reference model
- □ TCP/IP has a 4-layer model
- PDU, SAP, Request, Indication

Reading Assignment

- Read Sections 1.4, 1.5, Appendix 1A, 1B, Sections 2.2, and 2.3 of Stallings 6th Edition
 - □ 1.4 Protocols and Protocol Architecture
 - □ 1.5 Standards
 - □ Appendix 1A: Standards organizations
 - □ Appendix 1B: Internet Resources
 - □ 2.2 OSI
 - □ 2.3 TCP/IP

Homework

- □ Visit <u>www.ietf.org</u> and find the titles of RFC1 and RFC137
- □ Check newsgroup <u>comp.protocols.tcp-ip</u> and list any one of the current issues being discussed there
- Submit answers to Problems 2.4 and 2.7 of Stallings 6th Edition
 - □ Problem 2.4: Communications between France and China
 - □ Problem 2.7: Segmentation and Blocking

The Ohio State University Raj Jain

2-21