
Monitors

•Monitor: A tool used to observe the
activities on a system.

• Usage:

– A system programmer may use a
monitor to improve software
performance. Find frequently used
segments of the software.

– A systems manager may use a monitor
to measure resource utilizations and to
find the performance bottleneck.

– A systems manager may also use a
monitor to tune the system.

– A systems analyst may use a monitor to
characterize the workload.

– A systems analyst may use a monitor to
find model parameters, to validate
models, and to develop inputs for
models.

c©1994 Raj Jain 7.1



Monitor Terminology

• Event: A change in the system state is
called an event.
Examples: process context switching,
beginning of seek on a disk, and arrival of a
packet.

• Trace: A log of events

• Overhead: Artifact

• Domain: The set of activities observable by
the monitor.

• Input Rate: The maximum frequency of
events that a monitor can correctly observe.

– Burst-mode rate: the rate at which an
event can occur for a short duration.

– Sustained rate: Can tolerate for long
durations.

• Resolution: The coarseness of the
information observed is called the

c©1994 Raj Jain 7.2



resolution.
For example, record time only in units of 16
milliseconds.

• Input Width: The number of bits of
information recorded on a event is called
the input width.

c©1994 Raj Jain 7.3



Monitor Classification

• Implementation:

– Software monitor

– Hardware monitor

– Firmware monitor

– Hybrid monitor

• Trigger Mechanism:

– Event-driven: Good for rare events.

– Timer-driven (sampling monitor): Good
for frequent events.

• By result display ability:

– On-line monitors: display the system
state continuously

– Batch monitors: collect the data that
can be analyzed later.

• Example: A particular monitor may be
classified as a hybrid-sampling-batch

c©1994 Raj Jain 7.4



monitor.

c©1994 Raj Jain 7.5



Software Monitors

• Used for operating systems and higher level
software such as networks and databases.

• Suitable only if the input rate is low.

• Also used if overhead is not an issue.
For example, in an instruction-tracing
monitor, every single-user instruction
executed may be interrupted.

• Compared to H/W monitor:

– Lower input rates

– Lower resolutions

– Higher overhead

– Higher input widths

– Higher recording capacities

– Easier to develop

– Easier to modify

c©1994 Raj Jain 7.6



Issues in Software-Monitor Design

1. Activation Mechanism:

(a) Trap instruction

(b) Trace mode

(c) Timer interrupt

2. Buffer Size:

• Large ⇒ Too much time per write

• Small ⇒ Too many write operations

• Optimum = function of input rate, input
width, and the emptying rate.

3. Number of Buffers:

•Minimum two.

•More to allow varying

4. Buffer Overflow:

• Overwrite: old info is lost

• Block: new info is lost
c©1994 Raj Jain 7.7



In any case, record buffer overflows.
Similarly, counters can be stuck-at or
zeroed on overflow.

5. Data Compression or Analysis:

• Process the data as it is observed

– Reduces the space required.

– Increases the overhead.

6. On/Off Switch: Use conditional (IF ...
THEN ...)

• Reduces overhead

• Helps during development and
debugging.

7. Language: Use the same language as the
system

8. Priority:

• Should not affect system operations ⇒
Low priority for the monitor

c©1994 Raj Jain 7.8



• Timely recording ⇒ High priority

9. Abnormal-Events Monitoring: Should
observe normal as well as abnormal events.
For example:

• System initialization

• Device failures

• Program failures.

10. Users prefer to monitor abnormal events:

• Abnormal events occur at a lower rate
and impose less monitoring overhead

• Abnormal events help the user take
preventive action

c©1994 Raj Jain 7.9



Hardware Monitors

• Separate equipment attached to the system
being monitored via probes.

• No system resources consumed in
monitoring

• Higher input rate

• Less chances of introducing bugs into the
system operation

Components:

1. Probes

2. Counters

3. Logic Elements: AND, OR, and other logic
gates.

4. Comparators: To compare counters or
signal values with preset values.

5. Mapping Hardware: Allows histograms
c©1994 Raj Jain 7.10



6. Timer: For time-stamping or sampling

7. Tape/Disk: To store the data

Probe-point libraries: A list of points on the
system where the probes can be attached.

c©1994 Raj Jain 7.11



Software vs. Hardware Monitors
Criterion Hardware Monitor Software Monitor

Domain Difficult to monitor operating sys-
tem events.

Difficult to monitor hardware
events unless recognizable by an
instruction.

Input Rate Sampling rates of 105 per second
possible.

Sampling rate limited by the pro-
cessor MIPS and overhead re-
quired.

Time Resolution 10 ns is possible. Generally 10 to 16 ms.

Expertise Requires intimate knowledge of
hardware.

Requires intimate knowledge of
software.

Recording Capac-
ity

Limited by memory and secondary
storage. Not a problem currently.

Limited by overhead desired.

Input Width Can record several simultaneous
events.

Can’t record several simultaneous
events unless there are multiple
processors.

Monitor Overhead None Overhead depends upon the in-
put rate and input width. Less
than 5% adequate and more than
100% possible.

Portability Generally portable. Specific to an operating system.

Availability Monitoring continues even during
system malfunction or failure.

Can’t monitor during system
crash.

Errors Possible to connect the probes to
wrong points.

Once debugged, errors are rare.

Cost High Medium

c©1994 Raj Jain 7.12



Firmware Monitors

• Implemented by modifying the processor
microcode.

• For applications that fall in between the
software and hardware monitoring
boundaries.

• Similar to software monitors.

• Tighter timing limitations

• Very limited data reduction, if any.

Examples:

• Network interfaces microprogrammed to
monitor all traffic on the network

• Address profiles of microcode (micro-PC
histograms)

c©1994 Raj Jain 7.13



Hybrid Monitors

• Combination of software, hardware, or
firmware

• Hardware data-gathering + software
data-reduction

Example: Dimond monitor by Hughes (1980)

• Hardware part can observe all traffic on the
system bus.

• Software part can read instruction
addresses, processor modes, and system
and user identifications.

• Two parts can communicate through
device status and control registers.

c©1994 Raj Jain 7.14



Program-Execution Monitors

• Software monitors designed to observe
application software.

• Purpose:

– Tracing: To find the execution path of a
program.

– Timing: To find the time spent in
various modules of the program.

– Tuning: To find the most frequent or
most time-consuming sections of the
code.

– Assertion Checking: To verify the
relationships assumed among the
variables of a program.

– Coverage Analysis: To determine the
adequacy of a test run.

• Criteria for Program Selection:

– Time critical: to find out where the time
c©1994 Raj Jain 7.15



is being spent.

– Freqeuncy of use: high frequency
programs should be optimized first.

– Percentage of resources: to optimize

– Most expensive resource should be
optimized first.

c©1994 Raj Jain 7.16



Steps in Program-Execution
Monitoring

Figure ??

c©1994 Raj Jain 7.17



Issues in Designing a
Program-Execution Monitor

• All issues in s/w monitor design apply.

• Program Execution Specific:

1. Measurement Unit: modules,
subroutines, high-level language
statements, or machine instruction.

2. Measurement Technique: tracing (traps)
or sampling

3. Instrumentation Mechanism:
Instrumentation added
before/during/after compilation or
during run time.

By augmenting the source code, the
compiler-generated object code, the
run-time environment, the operating
system, or the hardware.

4. Profile Report:
c©1994 Raj Jain 7.18



– Show a frequency and time histogram.

– Summaries by modules, procedurs,
statements.

– Show self-time and inherited time

– Allow limiting or expanding the detail
(zoom-in or zoom-out)

c©1994 Raj Jain 7.19



Techniques for Improving Program
Performance

• Code optimization

• I/O optimization,

– Blocking I/Os

– Changing the file-access method

– Caching or prefetching data.

• Paging optimization.

Box 7.1 Techniques for Improving Program
Performance

c©1994 Raj Jain 7.20



1. Optimize the common case. The most frequently used path should also be the most
efficient. A procedure should handle all cases correctly and common cases efficiently.

2. Arrange a series of IF statements so that the most likely value is tested first.

3. Arrange a series of AND conditions so that the condition most likely to fail is tested
first.

4. Arrange entries in a table so that the most frequently sought values are the first to
be compared.

5. Structure the main line of the program so that it contains the most frequent path of
the program. Errors and exceptions should be handled separately.

6. Question the necessity of each instruction in the main path (time-critical or most
frequent) path of the code.

7. Trade memory space for processor time wherever possible. If a function is computed
more than once, compute it once and store the result. Some functions with parameters
can be replaced by a table of precomputed values.

8. Use hints. Keeping a fast but possibly inaccurate hint along with a slow but robust
algorithm may save time in most cases.

9. Cache the data that is accessed often. However, one must ensure that there is suffi-
cient locality before using caches.

10. Unroll short loops. Save the cost of modifying and testing loop indexes.

11. Replace searches by direct indexing, wherever possible. In some cases, this may require
more space than minimum.

12. Use the same size for data fields that need to be compared or added together.

13. Use the full word widths of the computer to evaluate expressions. For example, use
32 bits on a 32-bit computer even if you need only 31.

14. Align data fields on word boundaries, wherever possible.

15. Evaluate items only when needed, particularly if it is likely that it will not be needed.

Continued on the next page...

c©1994 Raj Jain 7.21



Box 7.1 Techniques for Improving Program Performance (Continued)

16. Initialize data areas during run time only when used. Wherever possible, the
values should be initialized at the compile time.

17. Use algebraic identities to simplify conditional expressions.

18. Replace threshold tests on monotone (continuously nondecreasing or continuously
nonincreasing) functions by tests on their parameters, thereby, avoiding the eval-
uation of the function.

19. Evaluate variables not changing in a loop before entering the loop.

20. Combine two nearby loops if they use the same set of conditions.

21. Use shifts in place of multiplication and division by powers of two.

22. Keep the code simple. Simpler programs are more efficient.

23. Block I/O requests together to reduce the number of I/O operations.

24. Preload small disk files into tables in memory.

25. Use multiple buffers for files to allow prefetching.

26. Link the most frequently used procedures together to maximize the locality of
reference.

27. Reference data in the order stored. Arrays stored by columns should be referenced
by columns.

28. Store data elements, that are used concurrently together.

29. Store subroutines in sequence so that calling and called subroutines will be loaded
together.

30. Align I/O buffers to page boundaries.

31. Open files, which are used together, in sequence so that buffers will be located
together.

32. Pass simple subroutine arguments by value rather than by reference, wherever
possible.

33. Pass large arrays and other data structures to subroutines by reference rather
than value.

34. Separate read-only code areas from read-write data areas to minimize the number
of page-writes. c©1994 Raj Jain 7.22



Exercises

7.1 For each of the following measurements list
the type of the monitor that can and cannot
be used. Which type of monitor would you
prefer and why.

a. Interrupt response time

b. Instruction opcode frequency

c. Program reference pattern

d. Virtual memory reference pattern in a
multiprogramming system

e. CPU time required to send one packet on a
network

f. Response time for a database query

7.2 For each of the following environments,
describe how you would implement a monitor
to produce a program counter histogram:

a. Using a H/W monitor
c©1994 Raj Jain 7.23



b. Using a S/W monitor on an IBM PC with
CPU having a trace-bit.

c. Using a S/W monitor on a TRS-80TM

with CPU not having a trace-bit.

c©1994 Raj Jain 7.24


